Soil Fertility and Land Productivity under Different Cropping Systems in Highlands and Medium Highlands of Chandina Sub-district, Bangladesh

2005 ◽  
Vol 15 (1) ◽  
pp. 63-76 ◽  
Author(s):  
S. L. Ranamukhaarachchi ◽  
Md. Mizanur Rahman Shamsun Nahar Begum
2013 ◽  
Vol 154 ◽  
pp. 211-225 ◽  
Author(s):  
J. Rurinda ◽  
P. Mapfumo ◽  
M.T. van Wijk ◽  
F. Mtambanengwe ◽  
M.C. Rufino ◽  
...  

2021 ◽  
Vol 122 ◽  
pp. 126169
Author(s):  
Johannes Wilhelmus Maria Pullens ◽  
Peter Sørensen ◽  
Bo Melander ◽  
Jørgen Eivind Olesen

1996 ◽  
Vol 76 (3) ◽  
pp. 401-406 ◽  
Author(s):  
C. A. Campbell ◽  
F. Selles ◽  
J. T. Harapiak ◽  
G. P. Lafond

An earlier analysis of yield trends of stubble-wheat in six cropping systems, over 35 yr, in a thin Black Chernozemic soil at Indian Head, Saskatchewan, showed that fertilizer improved soil quality, while absence of fertilizer, combined with frequent fallowing, led to soil degradation. The inclusion of a legume green manure crop in the rotation failed to maintain soil fertility, apparently because legumes do not supply P. Because the fertility and stored moisture effects were confounded, we conducted a growth chamber experiment to quantify soil responses to N and P in these six cropping systems. Soil from the top 15-cm of the rotation phase that had just grown two successive wheat (Triticum aestivum L.) crops was used. Various factorial combinations of ammonium nitrate-N and triple superphosphate-P were applied at N/P2O5 rates up to 200/200 kg ha−1. Soil moisture was maintained in the available range. Regression analysis showed that the fallow-wheat-wheat (F-W-W) and continuous wheat (Cont W) systems that had not been fertilized in 35 yr, and which had moderate amounts of NaHCO3-P, only responded to N. In contrast, the green manure (GM)- and hay (H)- containing systems, which had also not been fertilized before had low levels of NaHCO3-P and responded to both N and P. In the field, the yields of wheat grown on stubble in 1991 rated: Cont W (N + P) > F-W-W (N + P) > F-W-W-H-H-H > Cont W > GM-W-W > F-W-W. However, in the growth chamber the rating was: Cont W (N + P) > F-W-W-H-H-H > GM-W-W > Cont W > F-W-W (N + P) > F-W-W. We suggest that the growth chamber results more accurately reflect the present fertility status of these soils, because fertility is no longer confounded with soil moisture. Grain yields in the growth chamber were directly proportional to the previously measured initial potential rate of N mineralization, indicating the value of the latter parameter as a useful index of soil N fertility. Key words: Nitrogen, phosphorus, soil degradation, legumes, fertilizers


Solid Earth ◽  
2015 ◽  
Vol 6 (3) ◽  
pp. 1087-1101 ◽  
Author(s):  
D. Tsozué ◽  
J. P. Nghonda ◽  
D. L. Mekem

Abstract. The impact of direct-seeding mulch-based cropping systems (DMC), direct seeding (DS) and tillage seeding (TS) on Sorghum yields, soil fertility and the rehabilitation of degraded soils was evaluated in northern Cameroon. Field work consisted of visual examination, soil sampling, yield and rainfall data collection. Three fertilization rates (F1: 100 kg ha−1 NPK + 25 kg ha−1 of urea in DMC, F2: 200 kg ha−1 NPK + 50 kg ha−1 of urea in DMC and F3: 300 kg ha−1 NPK + 100 kg ha−1 of urea in DMC) were applied to each cropping system (DS, TS and DMC), resulting in nine experimental plots. Two types of chemical fertilizer were used (NPK 22.10.15 and urea) and applied each year from 2002 to 2012. Average Sorghum yields were 1239, 863 and 960 kg ha−1 in DMC, DS and TS, respectively, at F1, 1658, 1139 and 1192 kg ha−1 in DMC, DS and TS, respectively, at F2, and 2270, 2138 and 1780 kg ha−1 in DMC, DS and TS, respectively, at F3. pH values were 5.2–5.7 under DMC, 4.9–5.3 under DS and TS and 5.6 in the control sample. High values of cation exchange capacity were recorded in the control sample, TS system and F1 of DMC. Base saturation rates, total nitrogen and organic matter contents were higher in the control sample and DMC than in the other systems. All studied soils were permanently not suitable for Sorghum due to the high percentage of nodules. F1 and F2 of the DS were currently not suitable, while F1 and F3 of DMC, F3 of DS and F1, F2 and F3 of TS were marginally suitable for Sorghum due to low pH values.


Scientifica ◽  
2016 ◽  
Vol 2016 ◽  
pp. 1-12
Author(s):  
Raphiou Maliki ◽  
Brice Sinsin ◽  
Anne Floquet ◽  
Denis Cornet ◽  
Eric Malezieux ◽  
...  

Traditional yam-based cropping systems (shifting cultivation, slash-and-burn, and short fallow) often result in deforestation and soil nutrient depletion. The objective of this study was to determine the impact of yam-based systems with herbaceous legumes on dry matter (DM) production (tubers, shoots), nutrients removed and recycled, and the soil fertility changes. We compared smallholders’ traditional systems (1-year fallow ofAndropogon gayanus-yam rotation, maize-yam rotation) with yam-based systems integrated herbaceous legumes (Aeschynomene histrix/maize intercropping-yam rotation,Mucuna pruriens/maize intercropping-yam rotation). The experiment was conducted during the 2002 and 2004 cropping seasons with 32 farmers, eight in each site. For each of them, a randomized complete block design with four treatments and four replicates was carried out using a partial nested model with five factors: Year, Replicate, Farmer, Site, and Treatment. Analysis of variance (ANOVA) using the general linear model (GLM) procedure was applied to the dry matter (DM) production (tubers, shoots), nutrient contribution to the systems, and soil properties at depths 0–10 and 10–20 cm. DM removed and recycled, total N, P, and K recycled or removed, and soil chemical properties (SOM, N, P, K, and pH water) were significantly improved on yam-based systems with legumes in comparison with traditional systems.


2020 ◽  
Vol 6 (45) ◽  
pp. eaba1715 ◽  
Author(s):  
Giovanni Tamburini ◽  
Riccardo Bommarco ◽  
Thomas Cherico Wanger ◽  
Claire Kremen ◽  
Marcel G. A. van der Heijden ◽  
...  

Enhancing biodiversity in cropping systems is suggested to promote ecosystem services, thereby reducing dependency on agronomic inputs while maintaining high crop yields. We assess the impact of several diversification practices in cropping systems on above- and belowground biodiversity and ecosystem services by reviewing 98 meta-analyses and performing a second-order meta-analysis based on 5160 original studies comprising 41,946 comparisons between diversified and simplified practices. Overall, diversification enhances biodiversity, pollination, pest control, nutrient cycling, soil fertility, and water regulation without compromising crop yields. Practices targeting aboveground biodiversity boosted pest control and water regulation, while those targeting belowground biodiversity enhanced nutrient cycling, soil fertility, and water regulation. Most often, diversification practices resulted in win-win support of services and crop yields. Variability in responses and occurrence of trade-offs highlight the context dependency of outcomes. Widespread adoption of diversification practices shows promise to contribute to biodiversity conservation and food security from local to global scales.


2021 ◽  
Vol 157 ◽  
pp. 103773
Author(s):  
Qiaoyi Huang ◽  
Shuanhu Tang ◽  
Xiaolin Fan ◽  
Jianfeng Huang ◽  
Qiong Yi ◽  
...  

Agronomy ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 375 ◽  
Author(s):  
Von Yi Yap ◽  
Phaeng Xaphokhame ◽  
Andreas de Neergaard ◽  
Thilde Bech Bruun

Intercropping of legumes can be a strategy to improve soil fertility and enhance overall productivity while reducing dependency on external inputs in intensified cropping systems. Integration of legumes in maize-based cropping systems is promoted as an agro-ecological intensification option for input-constrained smallholders in uplands of Southeast Asia, but adoption rates in the region remain low. The overall aim of this study was to assess the suitability and trade-offs of integrating ricebean in maize-based smallholder cropping systems in upland areas of Northern Laos. We conducted a researcher-managed field trial to investigate the agronomic performance of ricebean/maize intercropping, and farmer-managed trials combined with surveys (N = 97), and focus group discussions in 10 villages to understand factors influencing farmers’ decision making concerning ricebean adoption. Drought, rat infestation and crop damage by grazing livestock were identified as important constraints to the production of ricebeans. Factors facilitating adoption included improvement of soil fertility, the potentially high selling price of ricebeans and the presence of extension agents, while barriers included labour shortage, concerns about competition with maize and lack of a market outlet for the ricebean produce. We conclude that the investigated maize/ricebean intercropping system is poorly suited to the current conditions in the study area, and call for farm-based studies focusing on developing locally adapted legume intercropping systems able to perform under variable rainfall conditions. Initiatives addressing challenges related to free grazing livestock and efforts to link legume producers in remote areas to emerging markets are also needed.


Sign in / Sign up

Export Citation Format

Share Document