Water Productivity of Modern Variety of Paddy Production: Rice-prawn and Year-round Paddy Farming Systems in Bangladesh

2008 ◽  
Vol 18 (2) ◽  
pp. 99-118 ◽  
Author(s):  
Basanta Kumar Barmon ◽  
Takumi Kondo ◽  
Fumio Osanami
2014 ◽  
Vol 65 (7) ◽  
pp. 583 ◽  
Author(s):  
J. A. Kirkegaard ◽  
J. R. Hunt ◽  
T. M. McBeath ◽  
J. M. Lilley ◽  
A. Moore ◽  
...  

Improving the water-limited yield of dryland crops and farming systems has been an underpinning objective of research within the Australian grains industry since the concept was defined in the 1970s. Recent slowing in productivity growth has stimulated a search for new sources of improvement, but few previous research investments have been targeted on a national scale. In 2008, the Australian grains industry established the 5-year, AU$17.6 million, Water Use Efficiency (WUE) Initiative, which challenged growers and researchers to lift WUE of grain-based production systems by 10%. Sixteen regional grower research teams distributed across southern Australia (300–700 mm annual rainfall) proposed a range of agronomic management strategies to improve water-limited productivity. A coordinating project involving a team of agronomists, plant physiologists, soil scientists and system modellers was funded to provide consistent understanding and benchmarking of water-limited yield, experimental advice and assistance, integrating system science and modelling, and to play an integration and communication role. The 16 diverse regional project activities were organised into four themes related to the type of innovation pursued (integrating break-crops, managing summer fallows, managing in-season water-use, managing variable and constraining soils), and the important interactions between these at the farm-scale were explored and emphasised. At annual meetings, the teams compared the impacts of various management strategies across different regions, and the interactions from management combinations. Simulation studies provided predictions of both a priori outcomes that were tested experimentally and extrapolation of results across sites, seasons and up to the whole-farm scale. We demonstrated experimentally that potential exists to improve water productivity at paddock scale by levels well above the 10% target by better summer weed control (37–140%), inclusion of break crops (16–83%), earlier sowing of appropriate varieties (21–33%) and matching N supply to soil type (91% on deep sands). Capturing synergies from combinations of pre- and in-crop management could increase wheat yield at farm scale by 11–47%, and significant on-farm validation and adoption of some innovations has occurred during the Initiative. An ex post economic analysis of the Initiative estimated a benefit : cost ratio of 3.7 : 1, and an internal return on investment of 18.5%. We briefly review the structure and operation of the initiative and summarise some of the key strategies that emerged to improve WUE at paddock and farm-scale.


2017 ◽  
Vol 54 (5) ◽  
pp. 684-698
Author(s):  
MENGISTU ALEMAYEHU ◽  
TILAHUN AMEDE ◽  
DON PEDEN ◽  
TESFAYE KUMSA ◽  
MICHAEL H. BÖHME ◽  
...  

SUMMARYA monitoring study was carried out in Gumara watershed, upper Blue Nile basin, with the objective of evaluating livestock water productivity (LWP) using a life cycle assessment method. Sixty two smallholder farmers were selected for the study implemented between November 2006 and February 2008. Data on crop and livestock production were collected to allow assessment of livestock water productivity. Study sites were situated in three different rainfed mixed crop/livestock farming systems; barley/potato based system (BPS), tef/finger-millet based system (TMS), and rice/noug based system (RNS). LWP was found to be significantly lower (p < 0.01) in RNS (0.057 USD m−3 water) than in TMS (0.066 USD m−3 water) or in BPS (0.066 USD m−3 water). Notably, water requirement per kg live weight of cattle increased towards the lower altitude area (in RNS) mainly because of increased evapo-transpiration. As a result, 20% more water was required per kg live weight of cattle in the low ground RNS compared to BPS situated in the upstream parts of the study area. Cattle herd management that involved early offtake increased LWP by 28% over the practice of late offtake. Crop water productivity expressed in monetary units (0.39 USD m−3 water) was higher than LWP (0.063 USD m−3 water) across the mixed farming systems of Gumara watershed. Strategies for improving LWP, from its present low level, could include keeping only the more productive animals, increasing pasture productivity and linking production to marketing. These strategies would also ease the imbalance between the existing high livestock population and the declining carrying capacity of natural pasture.


2009 ◽  
Vol 31 (2) ◽  
pp. 213 ◽  
Author(s):  
A. Haileslassie ◽  
D. Peden ◽  
S. Gebreselassie ◽  
T. Amede ◽  
A. Wagnew ◽  
...  

A recent study of the livestock water productivity (LWP), at higher spatial scales in the Blue Nile Basin, indicated strong variability across regions. To get an insight into the causes of this variability, we examined the effect of farm households’ access to productive resources (e.g. land, livestock) on LWP in potato–barley, barley–wheat, teff–millet and rice farming systems of the Gumera watershed (in the Blue Nile Basin, Ethiopia). We randomly selected 180 farm households. The sizes of the samples, in each system, were proportional to the respective system’s area. Then we grouped the samples, using a participatory wealth ranking method, into three wealth groups (rich, medium and poor) and used structured and pre-tested questionnaires to collect data on crops and livestock management and applied reference evapotranspiration (ET0) and crop coefficient (Kc) approaches to estimate depleted (evapotranspiration) water in producing animal feed and food crops. Then, we estimated LWP as a ratio of livestock’s beneficial outputs to water depleted. Our results suggest strong variability of LWP across the different systems: ranging between 0.3 and 0.6 US$ m−3 year−1. The tendency across different farming systems was comparable with results from previous studies at higher spatial scales. The range among different wealth groups was wider (0.1 to 0.6 US$ m−3 year−1) than among the farming systems. This implies that aggregating water productivity (to a system scale) masks hotspots and bright spots. Our result also revealed a positive trend between water productivity (LWP and crop water productivity, CWP) and farm households’ access to resources. Thus, we discuss our findings in relation to poverty alleviation and integrated land and water management to combat unsustainable water management practices in the Blue Nile Basin.


Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3627
Author(s):  
James Magidi ◽  
Barbara van Koppen ◽  
Luxon Nhamo ◽  
Sylvester Mpandeli ◽  
Rob Slotow ◽  
...  

Accurate information on irrigated areas’ spatial distribution and extent are crucial in enhancing agricultural water productivity, water resources management, and formulating strategic policies that enhance water and food security and ecologically sustainable development. However, data are typically limited for smallholder irrigated areas, which is key to achieving social equity and equal distribution of financial resources. This study addressed this gap by delineating disaggregated smallholder and commercial irrigated areas through the random forest algorithm, a non-parametric machine learning classifier. Location within or outside former apartheid “homelands” was taken as a proxy for smallholder, and commercial irrigation. Being in a medium rainfall area, the huge irrigation potential of the Inkomati-Usuthu Water Management Area (UWMA) is already well developed for commercial crop production outside former homelands. However, information about the spatial distribution and extent of irrigated areas within former homelands, which is largely informal, was missing. Therefore, we first classified cultivated lands in 2019 and 2020 as a baseline, from where the Normalised Difference Vegetation Index (NDVI) was used to distinguish irrigated from rainfed, focusing on the dry winter period when crops are predominately irrigated. The mapping accuracy of 84.9% improved the efficacy in defining the actual spatial extent of current irrigated areas at both smallholder and commercial spatial scales. The proportion of irrigated areas was high for both commercial (92.5%) and smallholder (96.2%) irrigation. Moreover, smallholder irrigation increased by over 19% between 2019 and 2020, compared to slightly over 7% in the commercial sector. Such information is critical for policy formulation regarding equitable and inclusive water allocation, irrigation expansion, land reform, and food and water security in smallholder farming systems.


2010 ◽  
Vol 8 (2) ◽  
pp. 116-126 ◽  
Author(s):  
Ismail Y. Rabbi ◽  
Hartwig H. Geiger ◽  
Bettina I. G. Haussmann ◽  
Dan Kiambi ◽  
Rolf Folkertsma ◽  
...  

To understand the effect of different farming systems on the dynamics of diversity of sorghum (Sorghum bicolor (L.) Moench) crop, genetic structure of widely used landraces and modern varieties collected from two contrasting agroecosystems, in eastern Sudan and western Kenya, were analysed with 16 polymorphic microsatellite markers. A total of 1104 accessions, grouped into 46 samples from individual farmers, were genotyped. Cluster analysis of the samples from the two countries displayed contrasting patterns. Most strikingly, differently named landraces from western Kenya formed widely overlapping clusters, indicating weak genetic differentiation, while those from eastern Sudan formed clearly distinguishable groups. Similarly, samples of the modern variety from Sudan displayed high homogeneity, whereas the most common modern variety from western Kenya was very heterogeneous. The high degree of fragmentation of farmlands of western Kenya, coupled with planting of different sorghum varieties in the same fields, increases the likelihood of inter-variety gene flow. This may explain the low genetic differentiation between the differently named landraces and heterogeneity of the modern variety from western Kenya. This study highlights the important role of farmers in shaping the genetic variation of their crops and provides population parameter estimates allowing forecasting of the fate of ‘modern’ germplasm (conventional or genetically modified) when introduced into subsistence farming systems.


2009 ◽  
Vol 102 (1-3) ◽  
pp. 33-40 ◽  
Author(s):  
Amare Haileslassie ◽  
Don Peden ◽  
Solomon Gebreselassie ◽  
Tilahun Amede ◽  
Katrien Descheemaeker

2010 ◽  
Vol 118 (3) ◽  
pp. 251-258 ◽  
Author(s):  
Dilys S. MacCarthy ◽  
Paul L.G. Vlek ◽  
A. Bationo ◽  
R. Tabo ◽  
M. Fosu

2011 ◽  
Vol 47 (S1) ◽  
pp. 133-151 ◽  
Author(s):  
FLORIANE CLEMENT ◽  
AMARE HAILESLASSIE ◽  
SABA ISHAQ ◽  
MICHAEL BLÜMMEL ◽  
M. V. R MURTY ◽  
...  

SUMMARYThe concept of water productivity (WP) or ‘more crop per drop’ has been revived recently in international water debates. Its application has notably been extended from single crops to mixed farming systems, integrating both crops and livestock, with the wider objective of reducing poverty. Using evidence from the Ganga Basin, India, we discuss the relevance of this concept as a tool to guide interventions for livelihood improvement and poverty alleviation. We argue that WP studies would benefit from greater attention to the role of capitals, inequities and institutions. Firstly, it is crucial to acknowledge the heterogeneity of capitals and capabilities of farmers to make changes in their farming systems and practices and avoid one-fix-all interventions. Identifying pre-existing inequities in water access within and among communities will support better targeting of poor communities. WP interventions can either reinforce or reduce inter-household inequities within communities. We stress the need for assessment of institutional impacts of WP interventions on water access and development.


Sign in / Sign up

Export Citation Format

Share Document