scholarly journals A Refined Sinus Finite Element Model for the Analysis of Piezoelectric-Laminated Beams

2011 ◽  
Vol 22 (3) ◽  
pp. 203-219 ◽  
Author(s):  
S.B. Beheshti-Aval ◽  
M. Lezgy-Nazargah ◽  
P. Vidal ◽  
O. Polit
2019 ◽  
Vol 11 (3) ◽  
pp. 168781401982846
Author(s):  
Jintu Zhong ◽  
Quansheng Yan ◽  
Jie Wu ◽  
Zhuojie Zhang

For laminated beams connected by Coulomb friction, interlayer slippage occurs when interfacial shear stress exceeds the resistant friction stress. Then, the physical properties of the laminated beams will change and may even cause structural damage. In this article, the law of interlayer slippage of laminated beams is obtained by mechanical derivation, and the finite element model is used for comparison verification. First, the internal shear force calculation formula of the laminated beam considering the interlaminar friction is derived from the segment micro-element method. Second, interlayer slippage laws of the frictional laminated beams in both horizontal and longitudinal direction are derived according to the hierarchical slip determination conditions. Third, according to the state quantity of different boundary conditions, the transfer matrix method is used to solve the longitudinal length of interlayer slip. Then, the design of the algorithm program is completed by MATLAB. Finally, based on the comparison between the finite element model calculation results and the calculation results of the algorithm program, the accuracy of the proposed method is verified. The analysis results indicate that slippage destroys the integrity of the laminated beam section and reduces the bending moment of inertia of the slip section of the beam. The influence of slip effect on the frictional laminated beams should be considered in deflection calculation.


1989 ◽  
Vol 17 (4) ◽  
pp. 305-325 ◽  
Author(s):  
N. T. Tseng ◽  
R. G. Pelle ◽  
J. P. Chang

Abstract A finite element model was developed to simulate the tire-rim interface. Elastomers were modeled by nonlinear incompressible elements, whereas plies were simulated by cord-rubber composite elements. Gap elements were used to simulate the opening between tire and rim at zero inflation pressure. This opening closed when the inflation pressure was increased gradually. The predicted distribution of contact pressure at the tire-rim interface agreed very well with the available experimental measurements. Several variations of the tire-rim interference fit were analyzed.


1996 ◽  
Vol 24 (4) ◽  
pp. 339-348 ◽  
Author(s):  
R. M. V. Pidaparti

Abstract A three-dimensional (3D) beam finite element model was developed to investigate the torsional stiffness of a twisted steel-reinforced cord-rubber belt structure. The present 3D beam element takes into account the coupled extension, bending, and twisting deformations characteristic of the complex behavior of cord-rubber composite structures. The extension-twisting coupling due to the twisted nature of the cords was also considered in the finite element model. The results of torsional stiffness obtained from the finite element analysis for twisted cords and the two-ply steel cord-rubber belt structure are compared to the experimental data and other alternate solutions available in the literature. The effects of cord orientation, anisotropy, and rubber core surrounding the twisted cords on the torsional stiffness properties are presented and discussed.


Sign in / Sign up

Export Citation Format

Share Document