Dynamic modeling for soft dielectric elastomer actuator considering different input frequencies and external loads

Author(s):  
Peng Huang ◽  
Jundong Wu ◽  
Yue Zhang ◽  
Pan Zhang ◽  
Yawu Wang

A dynamic model for the soft dielectric elastomer actuator (SDEA) is developed in this paper to describe its intricately nonlinear behaviors considering different input frequencies and external loads. Firstly, the characteristics of the SDEA are observed by several groups of experiments. A phenomenological model is proposed to describe the asymmetric hysteresis behavior of the SDEA, which consists of a Prandtl-Ishlinskii model with one-side play operator and a dead-zone model with one-side dead-zone operator. Meanwhile, a mathematical model is built to depict the creep behavior of the SDEA. The dynamic model including a module and a linear system is proposed to further handle the rate-dependent and the stress-dependent hysteresis behaviors of the SDEA, in which the module is the superposition of the asymmetric hysteresis model and the creep model. To ensure that the inverse solution of the module is existing, as well as the linear system is controllable and observable, the constraint conditions of parameter values of the dynamic model are constructed. Next, the parameter identification is divided into two steps, and the differential evolution algorithm is employed in each step. Finally, the generalization of the proposed dynamics model is demonstrated by comparing the model output with the experimental data.

2015 ◽  
Vol 107 (4) ◽  
pp. 042907 ◽  
Author(s):  
Guo-Ying Gu ◽  
Ujjaval Gupta ◽  
Jian Zhu ◽  
Li-Min Zhu ◽  
Xiang-Yang Zhu

2021 ◽  
pp. 112889
Author(s):  
Junxing Meng ◽  
Yu Qiu ◽  
Chengyi Hou ◽  
Qinghong Zhang ◽  
Yaogang Li ◽  
...  

2021 ◽  
Vol 20 (2) ◽  
pp. 25-32
Author(s):  
Noorhazirah Sunar ◽  
Mohd Fua’ad Rahmat ◽  
Ahmad ‘Athif Mohd Fauzi ◽  
Zool Hilmi Ismail ◽  
Siti Marhanis Osman ◽  
...  

Dead-zone in the valve degraded the performances of the Electro-Pneumatic Actuator (EPA) system.  It makes the system difficult to control, become unstable and leads to chattering effect nearest desired position.  In order to cater this issue, the EPA system transfer function and the dead-zone model is identified by MATLAB SI toolbox and the Particle Swarm Optimization (PSO) algorithm respectively.  Then a parametric control is designed based on pole-placement approach and combine with feed-forward inverse dead-zone compensation.  To reduce chattering effect, a smooth parameter is added to the controller output.  The advantages of using these techniques are the chattering effect and the dead-zone of the EPA system is reduced.  Moreover, the feed-forward system improves the transient performance.  The results are compared with the pole-placement control (1) without compensator and (2) with conventional dead-zone compensator.  Based on the experimental results, the proposed controller reduced the chattering effect due to the controller output of conventional dead-zone compensation, 90% of the pole-placement controller steady-state error and 30% and 40% of the pole-placement controller with conventional dead-zone compensation settling time and rise time.


Sign in / Sign up

Export Citation Format

Share Document