Fatigue life prediction under variable amplitude loading using a non-linear damage accumulation model

2014 ◽  
Vol 24 (5) ◽  
pp. 767-784 ◽  
Author(s):  
Fang-Jun Zuo ◽  
Hong-Zhong Huang ◽  
Shun-Peng Zhu ◽  
Zhiqiang Lv ◽  
Huiying Gao
2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Huiying Gao ◽  
Hong-Zhong Huang ◽  
Shun-Peng Zhu ◽  
Yan-Feng Li ◽  
Rong Yuan

Many structures are subjected to variable amplitude loading in engineering practice. The foundation of fatigue life prediction under variable amplitude loading is how to deal with the fatigue damage accumulation. A nonlinear fatigue damage accumulation model to consider the effects of load sequences was proposed in earlier literature, but the model cannot consider the load interaction effects, and sometimes it makes a major error. A modified nonlinear damage accumulation model is proposed in this paper to account for the load interaction effects. Experimental data of two metallic materials are used to validate the proposed model. The agreement between the model prediction and experimental data is observed, and the predictions by proposed model are more possibly in accordance with experimental data than that by primary model and Miner’s rule. Comparison between the predicted cumulative damage by the proposed model and an existing model shows that the proposed model predictions can meet the accuracy requirement of the engineering project and it can be used to predict the fatigue life of welded aluminum alloy joint of Electric Multiple Units (EMU); meanwhile, the accuracy of approximation can be obtained from the proposed model though more simple computing process and less material parameters calling for extensive testing than the existing model.


2016 ◽  
Vol 2016 ◽  
pp. 1-26 ◽  
Author(s):  
E. Santecchia ◽  
A. M. S. Hamouda ◽  
F. Musharavati ◽  
E. Zalnezhad ◽  
M. Cabibbo ◽  
...  

Metallic materials are extensively used in engineering structures and fatigue failure is one of the most common failure modes of metal structures. Fatigue phenomena occur when a material is subjected to fluctuating stresses and strains, which lead to failure due to damage accumulation. Different methods, including the Palmgren-Miner linear damage rule- (LDR-) based, multiaxial and variable amplitude loading, stochastic-based, energy-based, and continuum damage mechanics methods, forecast fatigue life. This paper reviews fatigue life prediction techniques for metallic materials. An ideal fatigue life prediction model should include the main features of those already established methods, and its implementation in simulation systems could help engineers and scientists in different applications. In conclusion, LDR-based, multiaxial and variable amplitude loading, stochastic-based, continuum damage mechanics, and energy-based methods are easy, realistic, microstructure dependent, well timed, and damage connected, respectively, for the ideal prediction model.


Sign in / Sign up

Export Citation Format

Share Document