Size effect analysis of quasi-brittle fracture with localizing gradient damage model

2021 ◽  
pp. 105678952098387
Author(s):  
Yi Zhang ◽  
Amit S. Shedbale ◽  
Yixiang Gan ◽  
Juhyuk Moon ◽  
Leong H. Poh

The size effect of a quasi-brittle fracture is associated with the size of fracture process zone relative to the structural characteristic length. In numerical simulations using damage models, the nonlocal enhancement is commonly adopted to regularize the softening response. However, the conventional nonlocal enhancement, both integral and gradient approaches, induces a spurious spreading of damage zone. Since the evolution of fracture process zone cannot be captured well, the conventional nonlocal enhancement cannot predict the size effect phenomenon accurately. In this paper, the localizing gradient enhancement is adopted to avoid the spurious spreading of damage. Considering the three-point bend test of concrete beams, it is demonstrated that the dissipation profiles obtained with the localizing gradient enhancement compare well with those of reference meso-scale lattice models. With the correct damage evolution process, the localizing gradient enhancement is shown to capture the size effect phenomenon accurately for a series of geometrically similar concrete beams, using only a single set of material parameters.

2012 ◽  
Vol 49 (13) ◽  
pp. 1818-1827 ◽  
Author(s):  
Peter Grassl ◽  
David Grégoire ◽  
Laura Rojas Solano ◽  
Gilles Pijaudier-Cabot

2018 ◽  
Vol 56 ◽  
pp. 02003 ◽  
Author(s):  
Sergey Suknev

Nonlocal criteria are used for prediction materials and rock mass failure near stress concentrations (pores, faults, openings, excavations). A common property of nonlocal fracture criteria is the introduction of the intrinsic material length characterizing its microstructure, which allows one to describe the size effect in conditions of stress concentration. At the same time the scope of their application is limited to cases of brittle or quasi-brittle fracture with a small fracture process zone. To expand the scope of the criteria for cases of fracture with a developed fracture process zone, it is proposed to abandon the hypothesis of the size of this zone as a material constant, associated only with the material structure. New fracture criteria are proposed, which are the development of the average stress criterion, and point stress criterion, and which contain a complex parameter that characterizes the size of the fracture process zone and accounts not only for the material structure, but also plastic properties of the material, geometry of the sample, and its loading conditions. Expressions are obtained for the critical pressure in the problem of the formation of tensile cracks under compression in the samples of geomaterials with a circular hole. The calculation results are in good agreement with the experimental data on the fracture of drilled gypsum plates.


2015 ◽  
Vol 665 ◽  
pp. 261-264 ◽  
Author(s):  
Jiří Klon ◽  
Václav Veselý

The paper presents an analysis with an attempt to capture the phenomenon of quasi-brittle fracture based on the record of the fracture test on a notched specimen via separation the energy amounts released for the crack advance and dissipated within the volume of the sizeable nonlinear zone at the crack tip – the fracture process zone (FPZ). The described approach is tested on selected data of published experimental campaigns accompanied with own conducted numerical simulations.


Sign in / Sign up

Export Citation Format

Share Document