Designing Better, Cost-Effective Brain–Computer Interfaces

Author(s):  
Chang S. Nam ◽  
Matthew Moore ◽  
Inchul Choi ◽  
Yueqing Li

Despite the increase in research interest in the brain–computer interface (BCI), there remains a general lack of understanding of, and even inattention to, human factors/ergonomics (HF/E) issues in BCI research and development. The goal of this article is to raise awareness of the importance of HF/E involvement in the emerging field of BCI technology by providing HF/E researchers with a brief guide on how to design and implement a cost-effective, steady-state visually evoked potential (SSVEP)–based BCI system. We also discuss how SSVEP BCI systems can be improved to accommodate users with special needs.

Sensors ◽  
2020 ◽  
Vol 20 (19) ◽  
pp. 5474 ◽  
Author(s):  
Dalin Yang ◽  
Trung-Hau Nguyen ◽  
Wan-Young Chung

The goal of this study was to develop and validate a hybrid brain-computer interface (BCI) system for home automation control. Over the past decade, BCIs represent a promising possibility in the field of medical (e.g., neuronal rehabilitation), educational, mind reading, and remote communication. However, BCI is still difficult to use in daily life because of the challenges of the unfriendly head device, lower classification accuracy, high cost, and complex operation. In this study, we propose a hybrid BCI system for home automation control with two brain signals acquiring electrodes and simple tasks, which only requires the subject to focus on the stimulus and eye blink. The stimulus is utilized to select commands by generating steady-state visually evoked potential (SSVEP). The single eye blinks (i.e., confirm the selection) and double eye blinks (i.e., deny and re-selection) are employed to calibrate the SSVEP command. Besides that, the short-time Fourier transform and convolution neural network algorithms are utilized for feature extraction and classification, respectively. The results show that the proposed system could provide 38 control commands with a 2 s time window and a good accuracy (i.e., 96.92%) using one bipolar electroencephalogram (EEG) channel. This work presents a novel BCI approach for the home automation application based on SSVEP and eye blink signals, which could be useful for the disabled. In addition, the provided strategy of this study—a friendly channel configuration (i.e., one bipolar EEG channel), high accuracy, multiple commands, and short response time—might also offer a reference for the other BCI controlled applications.


2020 ◽  
Vol 8 (6) ◽  
pp. 2370-2377

A brain-controlled robot using brain computer interfaces (BCIs) was explored in this project. BCIs are systems that are able to circumvent traditional communication channels (i.e. muscles and thoughts), to ensure the human brain and physical devices communicate directly and are in charge by converting various patterns of brain activity to instructions in real time. An automation can be managed with these commands. The project work seeks to build and monitor a program that can help the disabled people accomplish certain activities independently of others in their daily lives. Develop open-source EEG and brain-computer interface analysis software. The quality and performance of BCI of different EEG signals are compared. Variable signals obtained through MATLAB Processing from the Brainwave sensor. Automation modules operate by means of the BCI system. The Brain Computer Interface aims to build a fast and reliable link between a person's brain and a personal computer. The controls also use the Brain-Computer Interface for home appliances. The system will integrate with any smartphones voice assistant.


2020 ◽  
Author(s):  
Lujia Zhou ◽  
Xuewen Tao ◽  
Feng He ◽  
Peng Zhou ◽  
Hongzhi Qi

Abstract Background: In recent years, the brain-computer interface (BCI) based on motor imagery (MI) has been considered as a potential post-stroke rehabilitation technology. However, the recognition of MI relies on the event-related desynchronization (ERD) feature, which has poor task specificity. Further, there is the problem of false triggering (irrelevant mental activities recognized as the MI of the target limb). Methods: In this paper, we discuss the feasibility of reducing the false triggering rate using a novel paradigm, in which the steady-state somatosensory evoked potential (SSSEP) is combined with the MI (MI-SSSEP). Data from the target (right hand MI) and nontarget task (rest) were used to establish the recognition model, and three kinds of interference tasks were used to test the false triggering performance. In the MI-SSSEP paradigm, ERD and SSSEP features modulated by MI could be used for recognition, while in the MI paradigm, only ERD features could be used. Results: The results showed that the false triggering rate of interference tasks with SSSEP features was reduced to 29.3%, which was far lower than the 55.5% seen under the MI paradigm with ERD features. Moreover, in the MI-SSSEP paradigm, the recognition rate of the target and nontarget task was also significantly improved. Further analysis showed that the specificity of SSSEP was significantly higher than that of ERD (p<0.05), but the sensitivity was not significantly different. Conclusions: These results indicated that SSSEP modulated by MI could more specifically decode the target task MI, and thereby may have potential in achieving more accurate rehabilitation training.


2020 ◽  
Vol 16 (2) ◽  
Author(s):  
Stanisław Karkosz ◽  
Marcin Jukiewicz

AbstractObjectivesOptimization of Brain-Computer Interface by detecting the minimal number of morphological features of signal that maximize accuracy.MethodsSystem of signal processing and morphological features extractor was designed, then the genetic algorithm was used to select such characteristics that maximize the accuracy of the signal’s frequency recognition in offline Brain-Computer Interface (BCI).ResultsThe designed system provides higher accuracy results than a previously developed system that uses the same preprocessing methods, however, different results were achieved for various subjects.ConclusionsIt is possible to enhance the previously developed BCI by combining it with morphological features extraction, however, it’s performance is dependent on subject variability.


Sign in / Sign up

Export Citation Format

Share Document