Understanding Human Movement Patterns within Cislunar Habitats

Author(s):  
Harry Litaker ◽  
Omar Bekdash ◽  
Steve Chappell ◽  
Kara Beaton ◽  
Michael Gernhardt

In preparation for testing five Broad Agency Announcement (BAA) commercial cislunar habitat designs, the National Aeronautics and Space Administration (NASA) embarked on a yearlong in-house training program. This consisted of in-house testing for subject matter experts (SMEs) and crew to informed and ensure evaluation data collection techniques for each of the contractor options. Many evaluation techniques were tested with some continuing forward. Two-test conditions were employed - 1) habitat centric functions with one space element and 2) distributed functions across two or more space elements. This paper will look at one of these techniques—human circulation patterns—to assess a spacecraft habitat’s internal configuration while the crew is working a three day simulated cislunar mission. Real time tracking of the crew was accomplished using the AllTraq© system of ultra- wideband frequency (UWB) receivers and radio frequency identification tags (RFID). Heat maps, Zone Time Histograms, Zone Time Utilizations Tables and Task/Time Density Tables were constructed from the collected data. Results indicated distributing functions across elements decreased crew interference and task wait times. Additionally, areas of underutilization were located, which lead to interior layout design changes.

Sensor Review ◽  
2017 ◽  
Vol 37 (3) ◽  
pp. 338-345 ◽  
Author(s):  
Yawei Xu ◽  
Lihong Dong ◽  
Haidou Wang ◽  
Jiannong Jing ◽  
Yongxiang Lu

Purpose Radio frequency identification tags for passive sensing have attracted wide attention in the area of Internet of Things (IoT). Among them, some tags can sense the property change of objects without an integrated sensor, which is a new trend of passive sensing based on tag. The purpose of this paper is to review recent research on passive self-sensing tags (PSSTs). Design/methodology/approach The PSSTs reported in the past decade are classified in terms of sensing mode, composition and the ways of power supply. This paper presents operation principles of PSSTs and analyzes the characteristics of them. Moreover, the paper focuses on summarizing the latest sensing parameters of PSSTs and their matching equipment. Finally, some potential applications and challenges faced by this emerging technique are discussed. Findings PSST is suitable for long-term and large-scale monitoring compared to conventional sensors because it gets rid of the limitation of battery and has relatively low cost. Also, the static information of objects stored in different PSSTs can be identified by a single reader without touch. Originality/value This paper provides a detailed and timely review of the rapidly growing research in PSST.


2018 ◽  
Vol 89 (4) ◽  
pp. 560-571 ◽  
Author(s):  
Xiaochen Chen ◽  
Leena Ukkonen ◽  
Johanna Virkki

Passive radio frequency identification-based technology is a convincing approach to the achievement of versatile energy- and cost-efficient wireless platforms for future wearable applications. By using two-part antenna structures, the antenna-electronics interconnections can remain non-stressed, which can significantly improve the reliability of the textile-embedded wireless components. In this article, we describe fabrication of two-part stretchable and non-stretchable passive ultra-high frequency radio frequency identification textile tags using electro-textile and embroidered antennas, and test their reliability when immersed as well as under cyclic strain. The results are compared to tags with traditional one-part dipole antennas fabricated from electro-textiles and by embroidery. Based on the results achieved, the initial read ranges of the two-part antenna tags, around 5 m, were only slightly shorter than those of the one-part antenna tags. In addition, the tag with two-part antennas can maintain high performance in a moist environment and during continuous stretching, unlike the one-part antenna tag where the antenna-integrated circuit attachment is under stress.


Author(s):  
Simrn Kaur Gill ◽  
Kathryn Cormican

This chapter introduces the concept of Ambient Intelligence (AmI) with regard to the enabling technologies and how they are combined to assist e-entrepreneurs. AmI is a new paradigm in the area of Information and Communication Technology (ICT). AmI allows for seamless interaction between the human and technology. The AmI system provides the human user with information and decision support tailored to their specific needs. To achieve seamless interaction between the human and technology requires the environment that surrounds the human to be embedded with technology in everyday objects. These technologies gather information that the AmI system uses to adapt its responses to the human user. The aim of the chapter is to provide a better understanding of the AmI process and knowledge of the AmI system and tools. To this end three of the enabling technologies are discussed: semantic web, multi-modal services, and radio frequency identification tags. These technologies are then examined within the AmI reference model. The reference model provides an understanding of how the technologies can be combined to achieve different AmI features for the human users. This toolkit can be used by a new venture in the area of e-entrepreneurship to provide AmI to service providers, new businesses and traditional industries.


2013 ◽  
Vol 10 (1) ◽  
pp. 30-39 ◽  
Author(s):  
Kirsi Saarinen ◽  
Laura Frisk

Radio frequency identification tags (RFID) with anisotropic conductive adhesive (ACA) joints are used in various applications where the environmental conditions may impair their reliability. Thus the effects of different environmental stresses on reliability need to be investigated. The purpose of this work was to study whether a relatively simple shear stress model can be utilized in reliability prediction of anisotropically conductive paste (ACP) joints in an accelerated humidity test on the basis of the information obtained from another humidity test. If modeling gives accurate results when studying reliability, the need for actual testing would decrease and thereby time and cost savings could be achieved. In this study, finite element models were made to calculate shear stresses in ACP joints induced by two different humidity tests. Additionally, experimental tests were performed and the results were compared with those of modeling. The test samples were RFID tags whose microchips were attached with ACP. A constant humidity test was used to study the effects of high humidity level and a humidity cycling test was used to examine the effects of constantly varying humidity. In the modeling it was observed that the selection of the stress-free temperature has a significant effect on the results. With three different stress-free temperatures, three different sets of results were obtained. Although the tags saturated in the extreme conditions of the humidity cycling test, according to modeling, the change in relative humidity level in the humidity cycling test did not increase the harshness of the test. However, the temperature change in the humidity cycling test increased the harshness.


In Vivo ◽  
2019 ◽  
Vol 34 (1) ◽  
pp. 233-238 ◽  
Author(s):  
UMAR WAZIR ◽  
SALIM TAYEH ◽  
NICHOLAS PERRY ◽  
MICHAEL MICHELL ◽  
ANMOL MALHOTRA ◽  
...  

2019 ◽  
Vol 18 (12) ◽  
pp. 2642-2646
Author(s):  
Weikang Chen ◽  
Zhenyi Niu ◽  
Mengyuan Li ◽  
Zhuo Li ◽  
Qian Xu ◽  
...  

Author(s):  
Alex K. Jones ◽  
Swapna Dontharaju ◽  
Shenchih Tung ◽  
Peter J. Hawrylak ◽  
Leonid Mats ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document