Approaches to Improving Cardiac Structure and Function During and After an Acute Myocardial Infarction

2015 ◽  
Vol 21 (4) ◽  
pp. 363-367 ◽  
Author(s):  
Robert A. Kloner ◽  
Wangde Dai ◽  
Sharon L. Hale ◽  
Jianru Shi

While progress has been made in improving survival following myocardial infarction, this injury remains a major source of mortality and morbidity despite modern reperfusion therapy. While one approach has been to develop therapies to reduce lethal myocardial cell reperfusion injury, this concept has not translated to the clinics, and several recent negative clinical trials raise the question of whether reperfusion injury is important in humans undergoing reperfusion for acute ST segment elevation myocardial infarction. Therapy aimed at reducing myocardial cell death while the myocytes are still ischemic is more likely to further reduce myocardial infarct size. Developing new therapies to further reduce left ventricular remodeling after the acute event is another approach to preserving structure and function of the heart after infarction. Such therapy may include chronic administration of pharmacologic agents and/or therapies developed from the field of regenerative cardiology, including cellular or non-cellular materials such as extracellular matrix. The optimal therapy will be to administer agents that both reduce myocardial infarct size in the acute phase of infarction as well as reduce adverse left ventricular remodeling during the chronic or healing phase of myocardial infarction. Such a dual approach will help optimize the preservation of both cardiac structure and function.

2007 ◽  
Vol 293 (5) ◽  
pp. H3216-H3220 ◽  
Author(s):  
James S. Swaney ◽  
Hemal H. Patel ◽  
Utako Yokoyama ◽  
N. Chin Lai ◽  
Matthew Spellman ◽  
...  

Myocardial infarction (MI) results in left ventricular remodeling (e.g., ventricular hypertrophy, dilatation, and fibrosis). Fibrosis contributes to increased myocardial stiffening, impaired ventricular filling and function, and reduced cardiac output. Adenylyl cyclase (AC) expression and activity are reduced in animal models of heart failure. Stimulation of AC can inhibit extracellular matrix production in isolated cardiac fibroblasts; however, a role for reduced AC expression and activity in fibrosis associated with cardiac remodeling after chronic MI has never been determined. We tested the hypothesis that AC expression and activity are reduced in cardiac fibroblasts after chronic (18 wk) MI. Rats underwent coronary artery ligation or sham surgery (control), and echocardiography was used to assess left ventricular remodeling 1, 3, 5, 7, 10, 12, and 18 wk after surgery. Cardiac fibroblasts were isolated from the noninfarcted myocardium and compared for differences in AC activity and collagen synthesis. End-diastolic dimension was increased [control: 0.76 ± 0.02 cm and MI: 1.0 ± 0.02 cm (means ± SE), P < 0.001] and fractional shortening was decreased (control: 44 ± 2% and MI: 17 ± 2%, P < 0.001) in MI compared with control rats. Basal and forskolin-stimulated cAMP production were decreased by 90% and 93%, respectively, and AC5/6 expression was decreased 39% in fibroblasts isolated from MI rats compared with sham controls. Serum-stimulated collagen production was increased twofold and forskolin-mediated inhibition of collagen synthesis was reduced in fibroblasts from MI rats compared with controls. Our data demonstrate that AC expression and activity are reduced and collagen production is increased in cardiac fibroblasts of rats after MI.


2010 ◽  
Vol 55 (25) ◽  
pp. 2869-2876 ◽  
Author(s):  
Katrina Go Yamazaki ◽  
Pam R. Taub ◽  
Maraliz Barraza-Hidalgo ◽  
Maria M. Rivas ◽  
Alexander C. Zambon ◽  
...  

2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Shathiyah Kulandavelu ◽  
Ellena Paulino ◽  
Lauro Takeuchi ◽  
Rosemeire Kanashiro-Takeuchi ◽  
Wayne Balkan ◽  
...  

Introduction: Female hearts are less susceptible to myocardial injury following myocardial infarction (MI) and estrogen working through the nitric oxide (NO) pathway is thought to play a role. S-nitrosylation of cysteine thiols is a major signaling pathway through which NO exerts its action and mice with targeted deletion of S-nitrosoglutathione reductase (GSNOR), a denitrosylase that regulates S-nitrosylation, show increased levels of nitrosylated proteins. Male GSNOR -/- mice show a more favorable outcome after MI as compared to wild-type (WT), including reduced myocardial infarct size, improved ejection fraction and preserved left ventricular volumes. Whether female GSNOR -/- mice show gender-related cardiac protection following MI was not known and thus investigated. Methods & Results: MI was induced in male and female GSNOR -/- mice and their respective controls, C57Bl/6J, at 3-5 months via left anterior descending coronary artery occlusion. Serial echocardiography was performed prior to MI and after 1- and 4-weeks post-MI to assess ejection fraction (EF) and left ventricular volume both at diastole (end-diastolic volume, EDV) and systole (end-systolic volume, ESV). Compared to WT, GSNOR -/- males showed less dilation in both EDV (98.6 ± 9.3 mm vs. 140.6 ± 7.4 mm in WT, P<0.001) and ESV (73.1 ± 9.2 vs. 112.7 ± 7.3 mm in WT, P<0.05) at 4 weeks post-MI. Whereas, GSNOR -/- females showed greater dilation in both EDV (162.2 ± 13 vs. 83.8 ± 12 mm in WT, P<0.001) and ESV (141.8 ± 13 vs. 65.6 ± 12 mm in WT, P<0.001) as compared to WT females. EF decreased (P<0.001) in all groups post-MI, but at 4 weeks post-MI, it was significantly worse in GSNOR -/- females compared to GSNOR -/- males (14 ± 4% vs. 28 ± 3%, P<0.05). Conclusion: GSNOR -/- females exhibit significantly lower EF and greater dilation of left ventricular volumes both at diastole and systole following MI than any of the other groups suggesting that S-nitrosylation plays an important role in gender-related cardiac protection following myocardial injury. These findings suggest the importance of taking gender into account when exploring novel therapeutic treatments for myocardial injury.


Sign in / Sign up

Export Citation Format

Share Document