scholarly journals Improvement of Left Ventricular Remodeling and Function by Hydroxymethylglutaryl Coenzyme A Reductase Inhibition With Cerivastatin in Rats With Heart Failure After Myocardial Infarction

Circulation ◽  
2001 ◽  
Vol 104 (9) ◽  
pp. 982-985 ◽  
Author(s):  
Johann Bauersachs ◽  
Paolo Galuppo ◽  
Daniela Fraccarollo ◽  
Michael Christ ◽  
Georg Ertl
2019 ◽  
Vol 4 (3) ◽  
pp. 120-123
Author(s):  
Ioana Cîrneală ◽  
Diana Opincariu ◽  
István Kovács ◽  
Monica Chițu ◽  
Imre Benedek

Abstract Heart failure is a clinical syndrome that appears as a consequence of a structural disease, and the most common cause of left ventricular systolic dysfunction results from myocardial ischemia. Cardiac remodeling and neuroendocrine activation are the major compensatory mechanisms in heart failure. The main objective of the study is to identify the association between serum biomarkers illustrating the extent of myocardial necrosis (highly sensitive troponin as-says), left ventricular dysfunction (NT-proBNP), and systemic inflammatory response (illustrated via serum levels of hsCRP and interleukins) during the acute phase of a myocardial infarction, and the left ventricular remodeling process at 6 months following the acute event, quantified via speckle tracking echocardiography. The study will include 400 patients diagnosed with acute myocardial infarction without signs and symptoms of heart failure at the time of enrollment that will undergo a complex clinical examination and speckle tracking echocardiography. Serum samples from the peripheral blood will be collected in order to determine the inflammatory serum biomarkers. After 6 months, patients will be divided into 2 groups according to the development of ventricular remodeling, quantified by speckle tracking echocardiography: group 1 will consist of patients with a remodeling index lower than 15%, and group 2 will consist of patients with a remodeling index higher than 15%. All clinical and imaging data obtained at the baseline will be compared between these two groups in order to determine the features associated with a higher risk of deleterious ventricular remodeling and heart failure.


1999 ◽  
Vol 5 (3) ◽  
pp. 79
Author(s):  
Shintaro Kinugawa ◽  
Hiroyuki Tsutsui ◽  
Tomomi Ide ◽  
Hideo Ustumi ◽  
Nobuhiro Suematsu ◽  
...  

2001 ◽  
Vol 281 (5) ◽  
pp. R1734-R1745 ◽  
Author(s):  
J. Francis ◽  
R. M. Weiss ◽  
S. G. Wei ◽  
A. K. Johnson ◽  
R. B. Felder

This study examined the early neurohumoral events in the progression of congestive heart failure (CHF) after myocardial infarction (MI) in rats. Immediately after MI was induced by coronary artery ligation, rats had severely depressed left ventricular systolic function and increased left ventricular end-diastolic volume (LVEDV). Both left ventricular function and the neurohumoral indicators of CHF underwent dynamic changes over the next 6 wk. LVEDV increased continuously over the study interval, whereas left ventricular stroke volume increased but reached a plateau at 4 wk. Plasma renin activity (PRA), arginine vasopressin, and atrial natriuretic factor all increased, but with differing time courses. PRA declined to a lower steady-state level by 4 wk. Six to 8 wk after MI, CHF rats had enhanced renal sympathetic nerve activity and blunted baroreflex regulation. These findings demonstrate that the early course of heart failure is characterized not by a simple “switching on” of neurohumoral drive, but rather by dynamic fluctuations in neurohumoral regulation that are linked to the process of left ventricular remodeling.


2007 ◽  
Vol 293 (5) ◽  
pp. H3216-H3220 ◽  
Author(s):  
James S. Swaney ◽  
Hemal H. Patel ◽  
Utako Yokoyama ◽  
N. Chin Lai ◽  
Matthew Spellman ◽  
...  

Myocardial infarction (MI) results in left ventricular remodeling (e.g., ventricular hypertrophy, dilatation, and fibrosis). Fibrosis contributes to increased myocardial stiffening, impaired ventricular filling and function, and reduced cardiac output. Adenylyl cyclase (AC) expression and activity are reduced in animal models of heart failure. Stimulation of AC can inhibit extracellular matrix production in isolated cardiac fibroblasts; however, a role for reduced AC expression and activity in fibrosis associated with cardiac remodeling after chronic MI has never been determined. We tested the hypothesis that AC expression and activity are reduced in cardiac fibroblasts after chronic (18 wk) MI. Rats underwent coronary artery ligation or sham surgery (control), and echocardiography was used to assess left ventricular remodeling 1, 3, 5, 7, 10, 12, and 18 wk after surgery. Cardiac fibroblasts were isolated from the noninfarcted myocardium and compared for differences in AC activity and collagen synthesis. End-diastolic dimension was increased [control: 0.76 ± 0.02 cm and MI: 1.0 ± 0.02 cm (means ± SE), P < 0.001] and fractional shortening was decreased (control: 44 ± 2% and MI: 17 ± 2%, P < 0.001) in MI compared with control rats. Basal and forskolin-stimulated cAMP production were decreased by 90% and 93%, respectively, and AC5/6 expression was decreased 39% in fibroblasts isolated from MI rats compared with sham controls. Serum-stimulated collagen production was increased twofold and forskolin-mediated inhibition of collagen synthesis was reduced in fibroblasts from MI rats compared with controls. Our data demonstrate that AC expression and activity are reduced and collagen production is increased in cardiac fibroblasts of rats after MI.


2015 ◽  
Vol 21 (4) ◽  
pp. 363-367 ◽  
Author(s):  
Robert A. Kloner ◽  
Wangde Dai ◽  
Sharon L. Hale ◽  
Jianru Shi

While progress has been made in improving survival following myocardial infarction, this injury remains a major source of mortality and morbidity despite modern reperfusion therapy. While one approach has been to develop therapies to reduce lethal myocardial cell reperfusion injury, this concept has not translated to the clinics, and several recent negative clinical trials raise the question of whether reperfusion injury is important in humans undergoing reperfusion for acute ST segment elevation myocardial infarction. Therapy aimed at reducing myocardial cell death while the myocytes are still ischemic is more likely to further reduce myocardial infarct size. Developing new therapies to further reduce left ventricular remodeling after the acute event is another approach to preserving structure and function of the heart after infarction. Such therapy may include chronic administration of pharmacologic agents and/or therapies developed from the field of regenerative cardiology, including cellular or non-cellular materials such as extracellular matrix. The optimal therapy will be to administer agents that both reduce myocardial infarct size in the acute phase of infarction as well as reduce adverse left ventricular remodeling during the chronic or healing phase of myocardial infarction. Such a dual approach will help optimize the preservation of both cardiac structure and function.


Sign in / Sign up

Export Citation Format

Share Document