Vibration analysis of a nano-turbine blade based on Eringen nonlocal elasticity applying the differential quadrature method

2016 ◽  
Vol 23 (19) ◽  
pp. 3247-3265 ◽  
Author(s):  
Majid Ghadiri ◽  
Navvab Shafiei

This study investigates the small-scale effect on the flapwise bending vibrations of a rotating nanoplate that can be the basis of nano-turbine design. The nanoplate is modeled as classical plate theory (CPT) with boundary conditions as the cantilever and propped cantilever. The axial forces are also included in the model as the true spatial variation due to the rotation. Hamilton’s principle is used to derive the governing equation and boundary conditions for the classic plate based on Eringen’s nonlocal elasticity theory and the differential quadrature method is employed to solve the governing equations. The effect of the small-scale parameter, nondimensional angular velocity, nondimensional hub radius, setting angle and different boundary conditions in the first four nondimensional frequencies is discussed. Due to considering rotating effects, results of this study are applicable in nanomachines such as nanomotors and nano-turbines and other nanostructures.

Author(s):  
A Ghorbanpour Arani ◽  
MJ Maboudi ◽  
H Haghighi ◽  
R Kolahchi

In this study, transverse nonlinear vibration and instability analysis of a viscous-fluid-conveyed single-layered graphene sheet (SLGS) subjected to thermal gradient are investigated. The small-size effects on bulk viscosity and slip boundary conditions of nanoflow through Knudsen number ( Kn), as a small size parameter is considered. Viscopasternak model is considered to simulate the interaction between the graphene sheet and the surrounding elastic medium. Continuum orthotropic plate model and relations of classical plate theory are used. The nonlocal theory of Eringen is employed to incorporate the small-scale effect into the governing equations of the graphene sheet. Differential quadrature method is employed to solve the governing differential equations for simply supported edges. The convergence of the procedure is shown and the effects of flow velocity, temperature change and aspect ratio on the frequency of the single-layered graphene sheet are investigated. Moreover, the critical flow velocities and the instability characteristic are determined. It is evident from the results that the natural frequency of nanosheet increases with rising temperature.


Author(s):  
S. H. Mirtalaie ◽  
M. A. Hajabasi

In this paper, the Differential Quadrature Method (DQM) is used to study the large amplitude free vibration of thin annular sector plates. The geometrical nonlinear governing equations of motion are derived based on the classical plate theory and using the von Karman nonlinear strain-displacement relationships. Following the DQ-procedure and employing the concept of new degrees of freedom a nonlinear eigenvalue problem is obtained which is solved iteratively and nonlinear natural frequencies of the plate are obtained. The results show a very good convergence and they are compared with the available literature for the clamped boundary conditions to demonstrate the validity of the work. The effects of boundary conditions, inner to outer radius ratio and sector angle on the large amplitude free vibration of thin plate are studied.


Author(s):  
Siu-Tong Choi ◽  
Yu-Tuan Chou

Abstract The differential quadrature method has lately been more and more often used for analysis of engineering problems as an alternative for the finite element method or finite difference method. In this paper, static, dynamic and buckling analyses of structural components are performed by the differential quadrature method. To improve the accuracy of this method, an approach is proposed for selecting the sampling points which include base points and conditional points. The base points are taken as the roots of the Legendre polynomials. Accuracy of the problems analyzed will be increased by using the base points. The conditional points are determined according to boundary conditions and specified conditions of external load. A modified algorithm is proposed for applying two or more boundary conditions in a sampling point at boundary of domain, such that the higher-order partial differential equation can be solved without adding new sampling points. By applying this approach to variety problems, such as deflections of beam under nonuniformly distributed loading, vibration and buckling analyses of beam and plate, it is found that numerical results of the present approach are more accurate than those obtained by the equally-spaced differential quadrature method and is computationally efficient.


2019 ◽  
Vol 24 (2) ◽  
pp. 217-227
Author(s):  
Mostafa Talebitooti

A layerwise-differential quadrature method (LW-DQM) is developed for the vibration analysis of a stiffened laminated conical shell. The circumferential stiffeners (rings) and meridional stiffeners (stringers) are treated as discrete elements. The motion equations are derived by applying the Hamilton’s principle. In order to accurately account for the thickness effects and the displacement field of stiffeners, the layerwise theory is used to discretize the equations of motion and the related boundary conditions through the thickness. Then, the equations of motion as well as the boundary condition equations are transformed into a set of algebraic equations applying the DQM in the meridional direction. The advantage of the proposed model is its applicability to thin and thick unstiffened and stiffened shells with arbitrary boundary conditions. In addition, the axial load and external pressure is applied to the shell as a ratio of the global buckling load and pressure. This study demonstrates the accuracy, stability, and the fast rate of convergence of the present method, for the buckling and vibration analyses of stiffened conical shells. The presented results are compared with those of other shell theories and a special case where the angle of conical shell approaches zero, i.e. a cylindrical shell, and excellent agreements are achieved.


2019 ◽  
Vol 55 (1-2) ◽  
pp. 42-52
Author(s):  
Milad Ranjbaran ◽  
Rahman Seifi

This article proposes a new method for the analysis of free vibration of a cracked isotropic plate with various boundary conditions based on Kirchhoff’s theory. The isotropic plate is assumed to have a part-through surface or internal crack. The crack is considered parallel to one of the plate edges. Existence of the crack modified the governing differential equations which were formulated based on the line-spring model. Generalized differential quadrature method discretizes the obtained governing differential equations and converts them into an algebraic system of equations. Then, an eigenvalue analysis was used to determine the natural frequencies of the cracked plates. Some numerical results are given to demonstrate the accuracy and convergence of the obtained results. To demonstrate the efficiency of the method, the results were compared with finite element solutions and available literature. Also, effects of the crack depth, its location along the thickness, the length of the crack and different boundary conditions on the natural frequencies were investigated.


2017 ◽  
Vol 24 (17) ◽  
pp. 3908-3919 ◽  
Author(s):  
Mouafo Teifouet Armand Robinson

The two-dimensional viscoelastic differential constitutive relation is employed in this paper, in order to establish the equation of motion of axially moving viscoelastic rectangular plate. Two boundary conditions are investigated, namely the clamped free and two opposite edges simply supported and two others free. The differential quadrature method is used to solve the resulting complex eigenvalues equation. The influence of boundary conditions on the instability of a moving viscoelastic plate is analyzed firstly, and secondly the effects of system parameters such as plate's viscosity and aspect ratio on the vibration frequencies are presented.


2019 ◽  
Vol 13 (7) ◽  
pp. 49 ◽  
Author(s):  
Ola Ragb ◽  
Mokhtar Mohamed ◽  
M.S. Matbuly

Magneto-Electro-Thermo nanobeam resting on a nonlinear elastic foundation is presented. This beam is subjected to the external electric voltage and magnetic potential, mechanical potential and temperature change. Also, we added the new material PTZ-5H-COFe2O4. The governing equations and boundary conditions are derived using Hamilton principle. These equations are discretized by using three differential quadrature methods and iterative quadrature technique to determine the natural frequencies and mode shapes. Numerical analysis is introduced to explain the influence of computational characteristics of the proposed schemes on convergence, accuracy and efficiency of the obtained results. The obtained results agreed with the previous analytical and numerical ones. A detailed parametric study is conducted to investigate the influences of different boundary conditions, various composite materials, nonlinear elastic foundation, nonlocal parameter, the length-to-thickness ratio, external electric and magnetic potentials, axial forces, temperature and their effects on the vibration characteristics of Magneto-Electro-Thermo-Elastic nanobeam.


Sign in / Sign up

Export Citation Format

Share Document