Proportional–integral–derivative type H∞ controller for quarter car active suspension system

2016 ◽  
Vol 24 (10) ◽  
pp. 1951-1966 ◽  
Author(s):  
Bilal Erol ◽  
Akın Delibaşı
Author(s):  
E.M Allam ◽  
M.A.A Emam ◽  
Eid.S Mohamed

This paper presents the effect of the suspension working space, body displacement, body acceleration and wheel displacement for the non-controlled suspension system (passive system) and the controlled suspension system of a quarter car model (semi-active system), and comparison between them. The quarter car passive and semi-active suspension systems are modelled using Simulink. Proportional Integral Derivative controllers are incorporated in the design scheme of semi-active models. In the experimental work, the influence of switchable damper in a suspension system is compared with the passive and semi-active suspension systems.


Author(s):  
A.S. Emam ◽  
H. Metered ◽  
A.M. Abdel Ghany

In this paper, an optimal Fractional Order Proportional Integral Derivative (FOPID) controller is applied in vehicle active suspension system to improve the ride comfort and vehicle stability without consideration of the actuator. The optimal values of the five gains of FOPID controller to minimize the objective function are tuned using a Multi-Objective Genetic Algorithm (MOGA). A half vehicle suspension system is modelled mathematically as 6 degrees-of-freedom mechanical system and then simulated using Matlab/Simulink software. The performance of the active suspension with FOPID controller is compared with passive suspension system under bump road excitation to show the efficiency of the proposed controller. The simulation results show that the active suspension system using the FOPID controller can offer a significant enhancement of ride comfort and vehicle stability.


Author(s):  
Arivazhagan Anandan ◽  
Arunachalam Kandavel

This context exhaustively investigates the ride comfort performance index on the proposed active suspension vehicle system. Ride comfort in terms of occupants (includes driver and passenger) head acceleration, sprung mass vertical and pitching accelerations is considered. For this examination, a 14-degree-of-freedom human vehicle road integrated system model was extensively developed. Then, an active suspension system composed of a hydraulic actuator and proportional-integral-derivative controller is incorporated into the developed vehicle model to enhance the ride comfort. Besides, the designed controller needs to satisfy other vehicle performance indices like vehicle stability and ride safety. Accordingly, the controller parameters were optimally tunned with the help of genetic algorithm technique, on the basis of integral time absolute error criterion. The objective function was created on the basis of minimizing the integral time absolute error of sprung mass displacement, suspension working space and tire deflection responses. The entire response of human vehicle road integrated model, with the proposed active suspension system and passive suspension system on various random road surfaces (A, B, C, D and E with respect to ISO 8608) with five constant speeds (20, 40, 60, 80 and 100 kmph), was compared via surficial presentation. Furthermore, the comfort measures such as root mean square and vibration dose value from ISO 2631-1 were adopted to evaluate the severity between the occupants via head acceleration response. The simulation results showed that the suggested active suspension system significantly improved the ride comfort with guaranteed vehicle stability and ride safety.


2018 ◽  
Vol 184 ◽  
pp. 02018
Author(s):  
Ahmet Mehmet Karadeniz ◽  
Alsabbagh Ammar ◽  
Husi Dr.Geza

Developing and constantly changing technologies, efforts to achieve maximum efficiency with minimum fuel consumption, as well as the development of comfort and safety systems, have become very essential topic in car manufacturing and design. Whereas comfort and security were not given a high importance in the first produced cars, they are indispensable elements of today's automobiles. Since public transportation uses road in large scale, the need for safety and repose is also increasing. Nowadays, vehicles have better security and comfort systems, which react very quickly to all kinds of loads and different cases of driving (braking, acceleration, high speed, cornering), where the tires can keep the road at its best, utilizing an advanced suspension system. In this study, a quarter-car model was fulfilled using LabVIEW (Laboratory Virtual Instrumentation Engineering Workbench) software. The control of this model has been realized by applying two different controllers. PID (proportional, integral, derivative) controller which is a common and conventional control method and the Fuzzy Logic controller which is considered as an expert system that is becoming more and more widely used. In both control approaches, controlling the suspension system was achieved successfully. However; It has been determined that controlling the system using Fuzzy Logic controller gave better dynamic response than applying the PID controller for the quarter car suspension model that has been used in the direction of this study.


Author(s):  
Danish Saifi ◽  
Pramod Kumar

We are discussing active suspension in this research. It also includes an actuator or controller (ECU), wheels and body. The rider feels comfort in travelling due to the use of these types of suspension. Because it controls vertical moments or moves of the wheels and stable rider or passenger. It is most important in the automobile industries. There are many types of controllers used for fine control to vibration caused by wheels. E.g., PID controllers, it stands for Proportional Integral Derivative. PID controller provides better simultaneous vibration of the output of the control loop. It also used for improving the performance of the suspension system. We can do modelling and simulation carried out in MATLAB software for active suspension.


Author(s):  
Sharifah Munawwarah Syed Mohd Putra ◽  
Fitri Yakub ◽  
Mohamed Sukri Mat Ali ◽  
Noor Fawazi Mohd Noor Rudin ◽  
Zainudin A. Rasid ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document