Improvement on Ride Comfort of Quarter-Car Active Suspension System Using Linear Quadratic Regulator

Author(s):  
Sharifah Munawwarah Syed Mohd Putra ◽  
Fitri Yakub ◽  
Mohamed Sukri Mat Ali ◽  
Noor Fawazi Mohd Noor Rudin ◽  
Zainudin A. Rasid ◽  
...  
Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8231
Author(s):  
Manbok Park ◽  
Seongjin Yim

This paper presents a method to design active suspension controllers for a 7-Degree-of-Freedom (DOF) full-car (FC) model from controllers designed with a 2-DOF quarter-car (QC) one. A linear quadratic regulator (LQR) with 7-DOF FC model has been widely used for active suspension control. However, it is too hard to implement the LQR in real vehicles because it requires so many state variables to be precisely measured and has so many elements to be implemented in the gain matrix of the LQR. To cope with the problem, a 2-DOF QC model describing vertical motions of sprung and unsprung masses is adopted for controller design. LQR designed with the QC model has a simpler structure and much smaller number of gain elements than that designed with the FC one. In this paper, several controllers for the FC model are derived from LQR designed with the QC model. These controllers can give equivalent or better performance than that designed with the FC model in terms of ride comfort. In order to use available sensor signals instead of using full-state feedback for active suspension control, LQ static output feedback (SOF) and linear quadratic Gaussian (LQG) controllers are designed with the QC model. From these controllers, observer-based controllers for the FC model are also derived. To verify the performance of the controllers for the FC model derived from LQR and LQ SOF ones designed with the QC model, frequency domain analysis is undertaken. From the analysis, it is confirmed that the controllers for the FC model derived from LQ and LQ SOF ones designed with the QC model can give equivalent performance to those designed with the FC one in terms of ride comfort.


2021 ◽  
Vol 6 (3) ◽  
pp. 088-097
Author(s):  
Abdussalam Ali Ahmed

The primary objective of this paper is to improve the performance of a car's active suspension system and control the vibrations that occurred in the car's using two well-known control technologies, namely the Linear Quadratic Regulator (LQR) and fuzzy PID control. When the car suspension is designed, a quarter car model with two degrees of freedom is used. A complete control system is needed to provide the desired suspension performance and characteristics such as passenger comfort, road handling, and suspension deflection, this control system performed using the MATLAB/SIMULINK and includes three parts: input signals (actuator force and road profile), Controller part, and the suspension system model. The simulation results from the implemented Simulink models show a comparison between the uncontrolled suspension system and the suspension system with a fuzzy PID controller and the active suspension system of the car based on the linear-quadratic regulator, and it is explained thoroughly.


2020 ◽  
Vol 10 (22) ◽  
pp. 8060
Author(s):  
Ahmad Fares ◽  
Ahmad Bani Younes

In this paper, a controller learns to adaptively control an active suspension system using reinforcement learning without prior knowledge of the environment. The Temporal Difference (TD) advantage actor critic algorithm is used with the appropriate reward function. The actor produces the actions, and the critic criticizes the actions taken based on the new state of the system. During the training process, a simple and uniform road profile is used while maintaining constant system parameters. The controller is tested using two road profiles: the first one is similar to the one used during the training, while the other one is bumpy with an extended range. The performance of the controller is compared with the Linear Quadratic Regulator (LQR) and optimum Proportional-Integral-Derivative (PID), and the adaptiveness is tested by estimating some of the system’s parameters using the Recursive Least Squares method (RLS). The results show that the controller outperforms the LQR in terms of the lower overshoot and the PID in terms of reducing the acceleration.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Ivan Cvok ◽  
Mario Hrgetić ◽  
Matija Hoić ◽  
Joško Deur ◽  
Davor Hrovat ◽  
...  

Abstract Autonomous vehicles (AVs) give the driver opportunity to engage in productive or pleasure-related activities, which will increase AV’s utility and value. It is anticipated that many AVs will be equipped with active suspension extended with road disturbance preview capability to provide the necessary superior ride comfort resulting in almost steady work or play platform. This article deals with assessing the benefits of introducing various active suspensions and related linear quadratic regulator (LQR) controls in terms of improving the work/leisure ability. The study relies on high-performance shaker rig-based tests of a group of 44 drivers involved in reading/writing, drawing, and subjective ride comfort rating tasks. The test results indicate that there is a threshold of root-mean-square vertical acceleration, below which the task execution performance is similar to that corresponding to standstill conditions. For the given, relatively harsh road disturbance profile, only the fully active suspension with road preview control can suppress the vertical acceleration below the above critical superior comfort threshold. However, when adding an active seat suspension, the range of chassis suspension types for superior ride comfort is substantially extended and can include semi-active suspension and even passive suspension in some extreme cases that can, however, lead to excessive relative motion between the seat and the vehicle floor. The design requirements gained through simulation analysis, and extended with cost and packaging requirements related to passenger car applications, have guided design of two active seat suspension concepts applicable to the shaker rig and production vehicles.


2016 ◽  
Vol 36 (1) ◽  
pp. 23-30 ◽  
Author(s):  
Mahesh Nagarkar ◽  
G. J. Vikhe Patil

<p>In this paper, a genetic algorithm (GA) based in an optimization approach is presented in order to search the optimum weighting matrix parameters of a linear quadratic regulator (LQR). A Macpherson strut quarter car suspension system is implemented for ride control application. Initially, the GA is implemented with the objective of minimizing root mean square (RMS) controller force. For single objective optimization, RMS controller force is reduced by 20.42% with slight increase in RMS sprung mass acceleration. Trade-off is observed between controller force and sprung mass acceleration. Further, an analysis is extended to multi-objective optimization with objectives such as minimization of RMS controller force and RMS sprung mass acceleration and minimization of RMS controller force, RMS sprung mass acceleration and suspension space deflection. For multi-objective optimization, Pareto-front gives flexibility in order to choose the optimum solution as per designer’s need.</p>


Author(s):  
N.M. Ghazaly ◽  
A.S Ahmed ◽  
A.S Ali ◽  
G.T Abd El- Jaber

In recent years, the use of active control mechanisms in active suspension systems has attracted considerable attention. The main objective of this research is to develop a mathematical model of an active suspension system that is subjected to excitation from different road profiles and control it using H∞ technique for a quarter car model to improve the ride comfort and road handling. Comparison between passive and active suspension systems is performed using step, sinusoidal and random road profiles. The performance of the H∞ controller is compared with the passive suspension system. It is found that the car body acceleration, suspension deflection and tyre deflection using active suspension system with H∞ technique is better than the passive suspension system.


2012 ◽  
Author(s):  
Arfah Syahida Mohd Nor ◽  
Hazlina Selamat ◽  
Ahmad Jais Alimin

This paper presents the design of an active suspension control of a two–axle railway vehicle using an optimized linear quadratic regulator. The control objective is to minimize the lateral displacement and yaw angle of the wheelsets when the vehicle travels on straight and curved tracks with lateral irregularities. In choosing the optimum weighting matrices for the LQR, the Particle Swarm Optimization (PSO) method has been applied and the results of the controller performance with weighting matrices chosen using this method is compared with the commonly used, trial and error method. The performance of the passive and active suspension has also been compared. The results show that the active suspension system performs better than the passive suspension system. For the active suspension, the LQR employing the PSO method in choosing the weighting matrices provides a better control performance and a more systematic approach compared to the trial and error method. Key words: active suspension control, two–axle railway vehicle, linear quadratic regulator, particle swarm optimization


Sign in / Sign up

Export Citation Format

Share Document