scholarly journals An Active Suspension System of Quarter Car Models Using Sliding Mode Controller. (Design of Controller Using Minimum-Order Observer).

2000 ◽  
Vol 66 (642) ◽  
pp. 468-475 ◽  
Author(s):  
Masao KURIMOTO ◽  
Toshio YOSHIMURA ◽  
Junichi HINO
Author(s):  
C Kim ◽  
P I Ro

In this paper, the control of an active suspension system using a quarter car model has been investigated. Due to the presence of non-linearities such as a hardening spring, a quadratic damping force and the ‘tyre lift-off’ phenomenon in a real suspension system, it is very difficult to achieve desired performance using linear control techniques. To ensure robustness for a wide range of operating conditions, a sliding mode controller has been designed and compared with an existing nonlinear adaptive control scheme in the literature. The sliding mode scheme utilizes a variant of a sky-hook damper system as a reference model which does not require real-time measurement of road input. The robustness of the scheme is investigated through computer simulation, and the efficacy of the scheme is shown both in time and frequency domains. In particular, when the vertical load to the sprung mass is changed, the sliding mode control resumes normal operation faster than the nonlinear self-tuning control and the passive system by factors of 3 and 6, respectively, and suspension deflection is kept to a minimum. Other results showed advantages of the sliding mode control scheme in a quarter car system with realistic non-linearities.


2011 ◽  
Vol 216 ◽  
pp. 96-100
Author(s):  
Jing Jun Zhang ◽  
Wei Sha Han ◽  
Li Ya Cao ◽  
Rui Zhen Gao

A sliding mode controller for semi-active suspension system of a quarter car is designed with sliding model varying structure control method. This controller chooses Skyhook as a reference model, and to force the tracking error dynamics between the reference model and the plant in an asymptotically stable sliding mode. An equal near rate is used to improve the dynamic quality of sliding mode motion. Simulation result shows that the stability of performance of the sliding-mode controller can effectively improve the driving smoothness and safety.


Author(s):  
Gurubasavaraju Tharehalli mata ◽  
Vijay Mokenapalli ◽  
Hemanth Krishna

This study assesses the dynamic performance of the semi-active quarter car vehicle under random road conditions through a new approach. The monotube MR damper is modelled using non-parametric method based on the dynamic characteristics obtained from the experiments. This model is used as the variable damper in a semi-active suspension. In order to control the vibration caused under random road excitation, an optimal sliding mode controller (SMC) is utilised. Particle swarm optimisation (PSO) is coupled to identify the parameters of the SMC. Three optimal criteria are used for determining the best sliding mode controller parameters which are later used in estimating the ride comfort and road handling of a semi-active suspension system. A comparison between the SMC, Skyhook, Ground hook and PID controller suggests that the optimal parameters with SMC have better controllability than the PID controller. SMC has also provided better controllability than the PID controller at higher road roughness.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Shouwei Wei ◽  
Xiaoyu Su

To facilitate the performance of the active suspension system, the optimization of a new reaching law of the active suspension sliding mode controller based on cuckoo algorithm is addressed in this paper. Firstly, a linear model of the active suspension system is built. Then, according to the features of the new exponential reaching law, an active sliding mode control scheme based on the new sliding mode reaching law is designed. Finally, the simulation results are separated into two stages to verify the suitability and superiority of the proposed control scenario.


Sign in / Sign up

Export Citation Format

Share Document