Gear fault diagnosis based on time–frequency domain de-noising using the generalized S transform

2017 ◽  
Vol 24 (15) ◽  
pp. 3338-3347 ◽  
Author(s):  
Jianhua Cai ◽  
Xiaoqin Li

Gears are the most important transmission modes used in mining machinery, and gear faults can cause serious damage and even accidents. In the work process, vibration signals are influenced not only by friction, nonlinear stiffness, and nonstationary loads, but also by strong noise. It is difficult to separate the useful information from the noise, which brings some trouble to the fault diagnosis of mining machinery gears. The generalized S transform has the advantages of the short time Fourier transform and wavelet transform and is reversible. The time–frequency energy distribution of the gear vibration signal can be accurately presented by the generalized S transform, and a time–frequency filter factor can be constructed to filter the vibration signal in the time–frequency domain. These characteristics play an important role when the generalized S transform is used to remove the noise in the time–frequency domain. In this paper, a new gear fault diagnosis based on the time–frequency domain de-noising is proposed that uses the generalized S transform. The application principle, method steps, and evaluation index of the method are presented, and a wavelet soft-threshold filtering method is implemented for comparison with the proposed approach. The effectiveness of the proposed method is demonstrated by numerical simulation and experimental investigation of a gear with a tooth crack. Our analyses also indicate that the proposed method can be used for fault diagnosis of mining machinery gears.

Author(s):  
B Li ◽  
P-L Zhang ◽  
Z-J Wang ◽  
S-S Mi ◽  
D-S Liu

Time–frequency representations (TFR) have been intensively employed for analysing vibration signals in gear fault diagnosis. However, in many applications, TFR are simply utilized as a visual aid to detect gear defects. An attractive issue is to utilize the TFR for automatic classification of faults. A key step for this study is to extract discriminative features from TFR as input feature vector for classifiers. This article contributes to this ongoing investigation by applying morphological pattern spectrum (MPS) to characterize the TFR for gear fault diagnosis. The S transform, which combines the separate strengths of the short-time Fourier transform and wavelet transforms, is chosen to perform the time–frequency analysis of vibration signals from gear. Then, the MPS scheme is applied to extract the discriminative features from the TFR. The promise of MPS is illustrated by performing our procedure on vibration signals measured from a gearbox with five operating states. Experiment results demonstrate the MPS to be a satisfactory scheme for characterizing TFRs for an accurate classification of gear faults.


2013 ◽  
Vol 333-335 ◽  
pp. 1684-1687
Author(s):  
Bin Wu ◽  
Song He Zhang ◽  
Yue Gang Luo ◽  
Shan Ping Yu

Due to the feature and the forms of motion of the gears, the vibration signal of the gear is mainly the frequency modulation, amplitude modulation, or hybrid modulation signal corresponding to the gear-mesh frequency and its double frequency signal. When faults arise on the gears, the number and shape of the modulation sideband will be changed. The structures and forms of the FM composition differ according to the type of faults. According to the above mentioned characteristic, this essay raises a method to disassemble the gear vibrate signal, points out the formulas to build up characteristic vector, on that basis, the essay raised a gear fault diagnosis method based on EMD and Hidden Markov Model (HMM), this method can identify the working condition of the normal gears, snaggletooth gears, and pitting gears.


Author(s):  
Shulin Zheng ◽  
Zijun Shen

Complex geological characteristics and deepening of the mining depth are the difficulties of oil and gas exploration at this stage, so high-resolution processing of seismic data is needed to obtain more effective information. Starting from the time-frequency analysis method, we propose a time-frequency domain dynamic deconvolution based on the Synchrosqueezing generalized S transform (SSGST). Combined with spectrum simulation to estimate the wavelet amplitude spectrum, the dynamic convolution model is used to eliminate the influence of dynamic wavelet on seismic records, and the seismic signal with higher time-frequency resolution can be obtained. Through the verification of synthetic signals and actual signals, it is concluded that the time-frequency domain dynamic deconvolution based on the SSGST algorithm has a good effect in improving the resolution and vertical resolution of the thin layer of seismic data.


2013 ◽  
Vol 427-429 ◽  
pp. 1191-1195
Author(s):  
Jun Shan Si ◽  
Hui Zhu ◽  
Jian Yu ◽  
Qing Chun Meng ◽  
Xian Jiang Shi

In the wind turbine gear fault detection, using conventional vibration monitoring exists installation and maintenance inconvenience and numerous other shortcomings, this often leads to the wind turbine vibration detection techniques are not widely promoted. Based on sensorless wind turbine gear fault diagnosis experiment research in this paper, the use of general-purpose inverter and induction motor, built a double-fed asynchronous induction generator simulation test bed, and had a broken tooth gear fault simulation experiments. Through the generator stator current signal and the gear vibration signal contrast and analysis, preliminary validation of the proposed method is effective and feasible.


Author(s):  
Jianhua Cai ◽  
Yongliang Xiao

In view of the fact that the random noise interferes with the characteristic extraction of a rolling bearing fault signal, a new method of fault feature extraction is proposed based on the combination of the generalized S transform and singular value decomposition (SVD). Firstly, the 2D time–frequency spectrum bearing fault signal is obtained by applying the generalized S transform, and the time–frequency spectrum matrix is used as the objective matrix of SVD to solve the singular values. Then the K-means clustering algorithm is used to classify the singular value sequence, and the singular values for reconstruction are determined. Finally, the de-noised matrix is carried out the generalized S inversion transform to get the de-noised fault signal, and the power spectrum is calculated to finish the fault diagnosis. By analyzing the simulated signal and the actual bearing fault data, results show that the proposed method can effectively identify typical faults of rolling bearings and improve the diagnosis effect of rolling bearing faults. And it provides a new way to realize the fault diagnosis of rolling bearings under noise.


2011 ◽  
Vol 11 (8) ◽  
pp. 5299-5305 ◽  
Author(s):  
Bing Li ◽  
Pei-lin Zhang ◽  
Dong-sheng Liu ◽  
Shuang-shan Mi ◽  
Peng-yuan Liu

Sign in / Sign up

Export Citation Format

Share Document