Dynamic analysis of functionally graded carbon nanotube–reinforced shell structures with piezoelectric layers under dynamic loads

2019 ◽  
Vol 26 (13-14) ◽  
pp. 1157-1172 ◽  
Author(s):  
Hanen Mallek ◽  
Hanen Jrad ◽  
Mondher Wali ◽  
Amir Kessentini ◽  
Fehmi Gamaoun ◽  
...  

This research makes a first attempt to investigate the dynamic characteristics of functionally graded carbon nanotube–reinforced composite plates and shell structures with surface-bonded piezoelectric layers. A variational formulation is derived based on the linear double director shell theory to ensure realistic parabolic variation of transverse shear strain along the thickness direction. The assumed natural strains method is adopted to enhance the accuracy of the four-node piezoelectric shell element developed in this study. Numerical studies are conducted to validate the efficiency and numerical stability of the proposed model to predict the behavior of piezolaminated composite shell structures. Furthermore, dynamic responses are extended to functionally graded carbon nanotube–reinforced composite shells covered by two active layers. The host structure is reinforced by single-walled carbon nanotubes, which are assumed to be graded through the thickness direction with different types of distributions and embedded in a polymer matrix. The effect of the volume fractions, distribution type, and geometrical parameters of the carbon nanotubes is examined.

2019 ◽  
Vol 17 (03) ◽  
pp. 1850133 ◽  
Author(s):  
T. Truong-Thi ◽  
T. Vo-Duy ◽  
V. Ho-Huu ◽  
T. Nguyen-Thoi

This study presents an extension of the cell-based smoothed discrete shear gap method (CS-DSG3) using three-node triangular elements for the static and free vibration analyses of carbon nanotube reinforced composite (CNTRC) plates. The single-walled carbon nanotubes (SWCNTs) are assumed to be uniformly distributed (UD) and functionally graded (FG) distributed along the thickness direction. The material properties of carbon nanotube-reinforced composite plates are estimated according to the rule of mixture. The governing equations are developed based on the first-order shear deformation plate theory (FSDT). In the CS-DSG3, each triangular element will be divided into three sub-triangles, and in each sub-triangle, the stabilized discrete shear gap method is used to compute the strains and to avoid the transverse shear locking. Then the strain smoothing technique on the whole triangular element is used to smooth the strains on these three sub-triangles. Effects of several parameters, such as the different distribution of carbon nanotubes (CNTs), nanotube volume fraction, boundary condition and width-to-thickness ratio of plates are investigated. In addition, the effect of various orientation angles of CNTs is also examined in detail. The accuracy and reliability of the proposed method are verified by comparing its numerical solutions with those of other available results in the literature.


2019 ◽  
Vol 25 (14) ◽  
pp. 2063-2078 ◽  
Author(s):  
Mahsa Heidari ◽  
Hadi Arvin

In this paper, the linear and nonlinear free vibrations of functionally graded rotating composite Timoshenko beams reinforced by carbon nanotubes are presented. The formulation is based on the assumptions of Timoshenko beam theory in addition to consideration of the nonlinear von Karman strain–displacement relationship. The effective material properties of carbon nanotube reinforced composites are determined employing the Mori–Tanaka micromechanics model and the extended mixture rule. For the carbon nanotube reinforced composite beams, uniform distribution and four types of functionally graded distribution patterns of single-walled carbon nanotube reinforcements are considered. A differential transform method is applied on the nondimensionalized equations of motion to release the flapping modeshapes and the associated natural frequencies. The direct method of multiple scales is implemented to derive the effective nonlinearity and the corresponding nonlinear natural frequency. The accuracy of the present outcomes is validated by the comparison with the results given in the literature. The numerical results are presented in both tabular and graphical forms to investigate the effects of nanotube volume fractions, distribution types of the carbon nanotubes, and rotation speed on linear and nonlinear free vibration characteristics of carbon nanotube reinforced composite beam. The results demonstrate the important role of carbon nanotube distribution profile on linear and nonlinear free vibration features.


Author(s):  
Le Thi Nhu Trang ◽  
Hoang Van Tung

Geometrically nonlinear response of doubly curved panels reinforced by carbon nanotubes exposed to thermal environments and subjected to uniform external pressure are presented in this paper. Carbon nanotubes are reinforced into isotropic matrix through uniform and functionally graded distributions. Material properties of constituents are assumed to be temperature dependent, and effective elastic moduli of carbon nanotube-reinforced composite are determined according to an extended rule of mixture. Basic equations for carbon nanotube-reinforced composite doubly curved panels are established within the framework of first-order shear deformation theory. Analytical solutions are assumed, and Galerkin method is used to derive closed-form expressions of nonlinear load–deflection relation. Separate and combined effects of carbon nanotube distribution and volume fraction, elasticity of in-plane constraint, elevated temperature, initial imperfection, geometrical ratios and stiffness of elastic foundations on the nonlinear stability of nanocomposite doubly curved panels are analyzed through numerical examples.


Author(s):  
A Ghorbanpour Arani ◽  
M Mosayyebi ◽  
F Kolahdouzan ◽  
R Kolahchi ◽  
M Jamali

Damped free vibration of carbon nanotube reinforced composite microplate bounded with piezoelectric sensor and actuator layers are investigated in this study. For the mathematical modeling of sandwich structure, the refined zigzag theory is applied. In addition, to present a realistic model, the material properties of system are supposed as viscoelastic based on Kelvin–Voigt model. Distributions of single-walled carbon nanotubes along the thickness direction of the viscoelastic carbon nanotube reinforced composite microplate are considered as four types of functionally graded distribution patterns. The viscoelastic functionally graded carbon nanotube reinforced composite microplate subjected to electromagnetic field is embedded in an orthotropic visco-Pasternak foundation. Hamilton’s principle is employed to establish the equations of motion. In order to calculate the frequency and damping ratio of sandwich plate, boundary condition of plate is assumed as simply-supported and an exact solution is used. The effects of some significant parameters such as damping coefficient of viscoelastic plates, volume fraction of carbon nanotubes, different types of functionally graded distributions of carbon nanotubes, magnetic field, and external voltage on the damped free vibration of system are investigated. Results clarify that considering viscoelastic property for system to achieve accurate results is essential. Furthermore, the effects of volume fraction and distribution type of carbon nanotubes are remarkable on the vibration of sandwich plate. In addition, electric and magnetic fields are considerable parameters to control the behavior of viscoelastic carbon nanotube reinforced composite microplate. It is hoped that the results of this study could be applied in design of nano/micromechanical sensor and actuator systems.


2018 ◽  
Vol 53 (9) ◽  
pp. 1159-1179 ◽  
Author(s):  
Tao Fu ◽  
Zhaobo Chen ◽  
Hongying Yu ◽  
Zhonglong Wang ◽  
Xiaoxiang Liu

The present study is concerned with static and free vibration analyses of laminated functionally graded carbon nanotube reinforced composite rectangular plates on elastic foundation based on nth-order shear deformation theory. Four types of carbon nanotubes distributions along the plate thickness are considered, which include uniformly distributed and three other functionally graded distributions. Governing differential equations are derived by means of Hamilton’s principle. The differential quadrature method is developed to formulate the problem, and rapid convergence is observed in this study. A numerical comparison with available results in the literature is carried out to show the validity of the proposed theory. Furthermore, effects of the carbon nanotubes volume fraction, thickness side ratio, aspect ratio, foundation parameters, different thermal environments, the number of layers, lamination angle, boundary condition, and carbon nanotubes distribution types on the static response of laminated functionally graded carbon nanotube reinforced composite plates are also investigated.


2020 ◽  
pp. 107754632096171
Author(s):  
Salur Srikant Patnaik ◽  
Tarapada Roy

The present article deals with the vibration and damping characteristics of functionally graded carbon nanotubes reinforced hybrid composite skewed shell structure in different hygrothermal conditions. Carbon nanotube reinforced polymer as a matrix phase and carbon fibre as a reinforcing phase are used, and carbon fibre is graded with uniform distribution along the thickness direction for the shell panel according to the power law distribution. The Mori–Tanaka scheme and strength of materials are used to determine the mechanical properties of such functionally graded carbon nanotubes reinforced hybrid composite materials. Finite element modelling has been done by considering an eight-noded shell element with the transverse shear effect according to Mindlin’s hypothesis, and an oblique coordinate system is used for the functionally graded carbon nanotubes reinforced hybrid composite skewed shell structures. Damping is incorporated into such carbon nanotube–based hybrid skewed shell structure based on the Rayleigh damping model. A MATLAB-based in-house computer code has been developed for the proposed formulation and verified with published research work before using for the present dynamic analysis of functionally graded carbon nanotubes reinforced hybrid composite skewed shell structure under hygrothermal conditions. The effect of the carbon nanotube, carbon fibre, material distribution as per power law index and hygrothermal conditions on the damping behaviour of such functionally graded carbon nanotubes reinforced hybrid composite skewed shell structures have been studied. Furthermore, parametric studies are carried out for the first resonant frequency, absolute amplitude, settling time and carbon nanotube impact on the vibrational behaviour of different functionally graded carbon nanotubes reinforced hybrid composite skewed shell structures under different hygrothermal conditions.


Sign in / Sign up

Export Citation Format

Share Document