Some comparisons between heterogeneous and homogeneous layers for nonlinear SH waves in terms of heterogeneous and nonlinear effects

2020 ◽  
pp. 108128652094635 ◽  
Author(s):  
Dilek Demirkuş

This paper aims to make some comparative studies between heterogeneous and homogeneous layers for nonlinear shear horizontal (SH) waves in terms of the heterogeneous and nonlinear effects. Therefore, with this aim, two layers are defined as follows: on the one hand, one layer consists of hyperelastic, isotropic, heterogeneous, and generalized neo-Hookean materials; on the other hand, another layer is made up of hyperelastic, isotropic, homogeneous, and generalized neo-Hookean materials. Moreover, it is assumed that upper boundaries are stress-free and lower boundaries are rigidly fixed. The method of multiple scales is used in both analyses, in addition to using the known solutions of the nonlinear Schrödinger (NLS) equation, called bright and dark solitary wave solutions; these comparisons are made, numerically, and then all results are given for the lowest branch of both dispersion relations, graphically. Moreover, these comparisons are observed both on a large scale and on a small scale, not only in terms of the bright and dark solitary wave solutions but also in terms of the heterogeneous and nonlinear effects.

Author(s):  
D. P. Bennett ◽  
R. W. Brown ◽  
S. E. Stansfield ◽  
J. D. Stroughair ◽  
J. L. Bona

A theory is developed relating to the stability of solitary-wave solutions of the so-called Benjamin-Ono equation. This equation was derived by Benjamin (5) as a model for the propagation of internal waves in an incompressible non-diffusive heterogeneous fluid for which the density is non-constant only within a layer whose thickness is much smaller than the total depth. In his article, Benjamin wrote in closed form the one-parameter family of solitary-wave solutions of his model equation whose stability will be the focus of attention presently.


Open Physics ◽  
2018 ◽  
Vol 16 (1) ◽  
pp. 896-909 ◽  
Author(s):  
Dianchen Lu ◽  
Aly R. Seadawy ◽  
Mujahid Iqbal

AbstractIn this research work, for the first time we introduced and described the new method, which is modified extended auxiliary equation mapping method. We investigated the new exact traveling and families of solitary wave solutions of two well-known nonlinear evaluation equations, which are generalized Zakharov-Kuznetsov-Benjamin-Bona-Mahony and simplified modified forms of Camassa-Holm equations. We used a new technique and we successfully obtained the new families of solitary wave solutions. As a result, these new solutions are obtained in the form of elliptic functions, trigonometric functions, kink and antikink solitons, bright and dark solitons, periodic solitary wave and traveling wave solutions. These new solutions show the power and fruitfulness of this new method. We can solve other nonlinear partial differential equations with the use of this method.


Sign in / Sign up

Export Citation Format

Share Document