scholarly journals The Exact Solitary Wave Solutions in Continuity Equation of the One-Dimensional Granular Crystals of Elastic Spheres

2019 ◽  
Vol 07 (11) ◽  
pp. 2760-2766
Author(s):  
Zhiguo Liu ◽  
Jinliang Zhang
Author(s):  
D. P. Bennett ◽  
R. W. Brown ◽  
S. E. Stansfield ◽  
J. D. Stroughair ◽  
J. L. Bona

A theory is developed relating to the stability of solitary-wave solutions of the so-called Benjamin-Ono equation. This equation was derived by Benjamin (5) as a model for the propagation of internal waves in an incompressible non-diffusive heterogeneous fluid for which the density is non-constant only within a layer whose thickness is much smaller than the total depth. In his article, Benjamin wrote in closed form the one-parameter family of solitary-wave solutions of his model equation whose stability will be the focus of attention presently.


2020 ◽  
pp. 108128652094635 ◽  
Author(s):  
Dilek Demirkuş

This paper aims to make some comparative studies between heterogeneous and homogeneous layers for nonlinear shear horizontal (SH) waves in terms of the heterogeneous and nonlinear effects. Therefore, with this aim, two layers are defined as follows: on the one hand, one layer consists of hyperelastic, isotropic, heterogeneous, and generalized neo-Hookean materials; on the other hand, another layer is made up of hyperelastic, isotropic, homogeneous, and generalized neo-Hookean materials. Moreover, it is assumed that upper boundaries are stress-free and lower boundaries are rigidly fixed. The method of multiple scales is used in both analyses, in addition to using the known solutions of the nonlinear Schrödinger (NLS) equation, called bright and dark solitary wave solutions; these comparisons are made, numerically, and then all results are given for the lowest branch of both dispersion relations, graphically. Moreover, these comparisons are observed both on a large scale and on a small scale, not only in terms of the bright and dark solitary wave solutions but also in terms of the heterogeneous and nonlinear effects.


2018 ◽  
Vol 33 (37) ◽  
pp. 1850217 ◽  
Author(s):  
Mujahid Iqbal ◽  
Aly R. Seadawy ◽  
Dianchen Lu

In this work, we consider the propagation of one-dimensional nonlinear unmagnetized dusty plasma, by using the reductive perturbation technique to formulate the nonlinear mathematical model which is further modified Korteweg–de Vries (fmKdV) dynamical equation. We use the extend form of two methods, auxiliary equation mapping and direct algebraic methods, to investigate the families of dust and ion solitary wave solutions of one-dimensional nonlinear fmKdV. These new exact and solitary wave solutions, which represent the electrostatic potential and pressure for fmKdV, and also the graphical representation of electrostatic potential and pressure are shown with the aid of Mathematica.


2013 ◽  
Author(s):  
V. M. Vassilev ◽  
P. A. Djondjorov ◽  
M. Ts. Hadzhilazova ◽  
I. M. Mladenov

Sign in / Sign up

Export Citation Format

Share Document