Large-Scale 3D Phase Field Dislocation Dynamics Simulations On High-Performance Architectures

Author(s):  
Abigail Hunter ◽  
Faisal Saied ◽  
Chinh Le ◽  
Marisol Koslowski
Author(s):  
Vasily Bulatov ◽  
Wei Cai

The phase field method (PFM) can be used as an approach to dislocation dynamics simulations alternative to the line DD method discussed in Chapter 10. The degrees of freedom in PFM are continuous smooth fields occupying the entire simulation volume, and dislocations are identified with locations where the field values change rapidly. As we will see later, as an approach to dislocation dynamics simulations PFM holds several advantages. First, it is easier to implement into a computer code than a line DD model. In particular, the complex procedures for making topological changes (Section 10.4) are no longer necessary. Second, the implementation of PFM can take advantage of well-developed and efficient numerical methods for solving partial differential equations (PDEs). Another important merit of PFM is its applicability in a wide range of seemingly different situations. For example, it is possible to simulate the interaction and co-evolution of several types of material microstructures, such as dislocations and alloying impurities, within a unified model. PFM has become popular among physicists and materials scientists over the last 20 years, but as a numerical method it is not new. After all, it is all about solving PDEs on a grid. Numerical integration of PDEs is a vast and mature area of computational mathematics. A number of efficient methods have already been developed, such as the finite difference method [121], the finite element method [122], and spectral methods [123], all of which have been used in PFM simulations. The relatively new aspects of PFM are associated with the method’s formulation and applications, which are partly driven by the growing interest in understanding material microstructures. In Section 11.1, we begin with the general aspects of PFM demonstrated by two simple applications of the method not related to dislocations. Section 11.2 describes the elements required to adapt PFM to dislocation simulations. There we will briefly venture into the field of micromechanics and consider the concept of eigenstrain. The elastic energy of an arbitrary eigenstrain field is derived in Section 11.3. Section 11.4 discusses an example in which the PFM equations for dislocations are solved using the fast Fourier transform method.


2003 ◽  
Vol 779 ◽  
Author(s):  
Markus J. Buehler ◽  
Alexander Hartmaier ◽  
Huajian Gao

AbstractMotivated by recent theoretical and experimental progress, large-scale atomistic simulations are performed to study plastic deformation in sub-micron thin films. The studies reveal that stresses are relaxed by material transport from the surface into the grain boundary. This leads to the formation of a novel defect identified as diffusion wedge. Eventually, a crack-like stress field develops because the tractions along the grain boundary relax, but the adhesion of the film to the substrate prohibits strain relaxation close to the interface. This causes nucleation of unexpected parallel glide dislocations at the grain boundary-substrate interface, for which no driving force exists in the overall biaxial stress field. The observation of parallel glide dislocations in molecular dynamics studies closes the theory-experiment-simulation linkage. In this study, we also compare the nucleation of dislocations from a diffusion wedge with nucleation from a crack. Further, we present preliminary results of modeling constrained diffusional creep using discrete dislocation dynamics simulations.


2000 ◽  
Vol 653 ◽  
Author(s):  
Vasily V. Bulatov ◽  
Moon Rhee ◽  
Wei Cai

AbstractThis article presents an implementation of periodic boundary conditions (PBC) for Dislocation Dynamics (DD) simulations in three dimensions (3D). We discuss fundamental aspects of PBC development, including preservation of translational invariance and line connectivity, the choice of initial configurations compatible with PBC and a consistent treatment of image stress. On the practical side, our approach reduces to manageable proportions the computational burden of updating the long-range elastic interactions among dislocation segments. The timing data confirms feasibility and practicality of PBC for large-scale DD simulations in 3D.


2017 ◽  
Author(s):  
Claire Marie Weaver ◽  
Abigail Hunter ◽  
Irene Beyerlein ◽  
Enrique Martinez Saez ◽  
Curt Allan Bronkhorst

2020 ◽  
Vol 171 ◽  
pp. 109217 ◽  
Author(s):  
Xiaoyao Peng ◽  
Nithin Mathew ◽  
Irene J. Beyerlein ◽  
Kaushik Dayal ◽  
Abigail Hunter

2019 ◽  
Vol 164 ◽  
pp. 171-183 ◽  
Author(s):  
S.I. Rao ◽  
C. Woodward ◽  
B. Akdim ◽  
E. Antillon ◽  
T.A. Parthasarathy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document