diffusional creep
Recently Published Documents


TOTAL DOCUMENTS

210
(FIVE YEARS 5)

H-INDEX

35
(FIVE YEARS 0)

Metals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1492
Author(s):  
Tauheed Shehbaz ◽  
Fahd Nawaz Khan ◽  
Massab Junaid ◽  
Julfikar Haider

In a dissimilar welded joint between Ni base alloys and titanium, creep failure is a potential concern as it could threaten to undermine the integrity of the joint. In this research, the mechanical heterogeneity of a Pulsed TIG welded joint between commercially pure titanium (CpTi) and Inconel 718 (IN718) with a vanadium (V) interlayer was studied through a nanoindentation technique with respect to hardness, elastic modulus, and ambient temperature creep deformation across all regions (fusion zones and interfaces, mainly composed of a dendritic morphology). According to the experimental results, a nanohardness of approximately 10 GPa was observed at the V/IN718 interface, which was almost 70% higher than that at the V/CpTi interface. This happened due to the formation of intermetallic compounds (IMCs) (e.g., Ti2Ni, NiV3, NiTi) and a (Ti, V) solid solution at the V/IN718 and V/CpTi interfaces, respectively. In addition, nanohardness at the V/IN718 interface was inhomogeneous as compared to that at the V/CpTi interface. Creep deformation behavior at the IN718 side was relatively higher than that at different regions on the CpTi side. The decreased plastic deformation or creep effect of the IMCs could be attributed to their higher hardness value. Compared to the base metals (CpTi and IN718), the IMCs exhibited a strain hardening effect. The calculated values of the creep stress exponent were found in the range of 1.51–3.52 and 2.52–4.15 in the V/CpTi and V/IN718 interfaces, respectively. Furthermore, the results indicated that the creep mechanism could have been due to diffusional creep and dislocation climb.



2021 ◽  
Author(s):  
Joseph Cukjati ◽  
Reid Cooper ◽  
Stephen Parman ◽  
Ningli Zhao ◽  
Austin Akey ◽  
...  

<p>Here we report Atom Probe Tomography (APT) analyses of grain and phase boundaries of laboratory-deformed, fine-grained mixtures of clinopyroxene and olivine (Zhao, et al., 2019).  The experiments show that the mixtures deform much more rapidly than either mineral endmember.  This enhanced deformation in the two-phase material is due to stress-driven reactions at the phase boundaries. Lower effective viscosities of phase mixtures may be critical to the initiation of plate tectonics and the formation of mantle shear zones.</p><p>The hypothesis presented here is that the ‘bulk rock’ – a wehrlite – deforms rapidly because conversion of one phase to the other occurs at phase boundaries (e.g., Sundberg & Cooper, 2008).  In this model, grain-scale transport of the shared (slowly-diffusing) mineralogical component Si<sup>4+</sup> is not required.  The near-boundary gradients of olivine-insoluble ions are presented as evidence of the phase transformation which either dissolves olivine into clinopyroxene or vice versa.  </p><p>The resolving power of the APT makes it a promising tool for investigating the microphysics of rock deformation, bridging the atomic scale all the way to the plate-tectonic scale.</p><p>References:<br>Sundberg M, Cooper RF (2008) Crystallographic preferred orientation produced by diffusional creep of harzburgite: effects of chemical interactions among phases during plastic flow. J Geophys Res Solid Earth 113(12):B12208.<br>Zhao N, Hirth G, Cooper RF, Kruckenberg SC, Cukjati J (2019) Low viscosity of mantle rocks linked to phase boundary sliding. Earth Planet Sci Lett 517:83–94.</p>



Author(s):  
А.С. Тукмакова ◽  
Н.И. Хахилев ◽  
Д.Б. Щеглова ◽  
В.Д. Насонов ◽  
А.П. Новицкий ◽  
...  

The analysis of the shrinkage rate of powders, based on the power-law creep model of a porous body, was carried out in this paper to calculate the compaction parameters of CoSb3-based skutterudites and Fe2VAl-based Heusler alloys within field-activated sintering. It was indicated that this method, which had already been used for metal and ceramic powders, is applicable for thermoelectric powders. The values of strain rate sensitivity were obtained, and the corresponding powder compaction mechanisms have been defined. The main creep mechanism for skutterudites was found to be a dislocation climb, that later was replaced by grain boundary sliding, and the last sintering stage was associated with diffusional creep. The main creep mechanism for Heusler alloys was grain boundary sliding, later replaced by diffusional creep.



2020 ◽  
Author(s):  
Michael William Donald Cooper ◽  
K. A. Gamble ◽  
Christopher Matthews ◽  
Anders David Ragnar Andersson




2020 ◽  
Vol 321 ◽  
pp. 11011
Author(s):  
Laurie Despax ◽  
Vanessa Vidal ◽  
Denis Delagnes ◽  
Moukrane Dehmas ◽  
Hiroaki Matsumoto ◽  
...  

Ti-6Al-4V is able to support high level of deformations like superplastic deformation for aeronautical structural applications. However, the applied temperature during forming induces changes in phase fraction, which may have an impact on the mechanisms of deformation involved and the final part. Mechanisms described in the literature, like dislocation glide, diffusional creep, Grain Boundary Sliding (GBS) accommodated by dislocation or diffusion, are still controversial as there are mainly based on post mortem analysis or on stress-strain data. The purpose of this work was to combine interrupted tensile tests and heat treatments to improve the understanding of the mechanisms of deformation on each stage of deformation. The chosen test temperatures were 750°C and 920°C which correspond to different β phase fractions. The microstructural features like grain size and phase fraction were studied by Scanning Electron Microscope (SEM) combined with image analysis. Moreover, EBSD was used to follow the change of crystalline orientation of α grains to distinguish the involved mechanisms as a function of the deformation. Indeed, it would appears that several mechanisms could be activated depending on the deformation stage and on the temperature.



2019 ◽  
Vol 827 ◽  
pp. 98-103
Author(s):  
F. de Bona ◽  
Alex Lanzutti ◽  
G. Lucacci ◽  
Luciano Moro ◽  
Jelena Srnec Novak

During the production process, turbine blades are subjected to a solubilization heat treatment, followed by tempering treatment, in order to obtain better mechanical properties. It is observed that, in some cases, permanent distortion can occur during the high temperature treatment (austenitising temperature). In this work, a high temperature creep resisting steel blade with a simplified geometry is considered. A finite element model is developed considering: the material properties depending on temperature, phase transformation and viscoplasticity (Nabarro-Herring and bilinear kinematic models). A nonlinear transient thermo-mechanical analysis is performed to simulate a standard thermal cycle. Material properties are partially calibrated based on dilatometric tests and partially from data available in literature. Adopting a laser scanner system, the blades geometry is measured before and after the heat treatment to calculate the permanent deflection. Comparing numerical results with experiments, it has been observed that the distortion phenomenon is mainly affected by the low-stress diffusional creep. This effect is due to the fact that, during the heat treatment, the blade is held at high temperature for a relatively long time according to a particular supporting lay-out. To minimize the permanent distortion, the numerical model permits an appropriate supporting system to be set-up, whose validity has been confirmed experimentally.



2018 ◽  
Vol 928 ◽  
pp. 194-199
Author(s):  
Chinnarut Panpun ◽  
Thawatchai Plookphol ◽  
Somjai Janudom

This research work was aimed at studying creep of a slurry squeeze-cast ZA-27 zinc alloy. The Gas-Induced Semi-Solid (GISS) technique was used for preparing semi-solid metal slurry with two different solid fractions. The ZA-27 alloy slurry was squeeze cast to form plate-like specimens with dimension of 100×100×15 mm3. The tensile specimens were machined from the squeeze-cast plates and heat-treated before mechanical test. Tensile creep tests were performed at 140 °C, at stresses of 20, 40, 60 and 80 MPa, in an ambient air. Two groups of specimens, the low solid fraction ZA-27 alloy (GISS 5s) and the high solid fraction ZA-27 alloy (GISS 15s) were tested for comparison of creep property. The results show that the GISS 5s has longer creep life than the GISS 15s. The power-law creep stress exponents (n) of GISS 5s and GISS 15s are 1.45 and 1.04, respectively. Based on the creep stress exponents found from the present study, it could be concluded that at the temperature of 140 °C and stress between 20 and 80 MPa, creep of both alloys was governed by the diffusional creep mechanism.



Sign in / Sign up

Export Citation Format

Share Document