Temperature effects on buckling and vibration characteristics of sandwich plate with viscoelastic core and functionally graded material constraining layer

2017 ◽  
Vol 21 (4) ◽  
pp. 1557-1577 ◽  
Author(s):  
Shince V Joseph ◽  
SC Mohanty

This article deals with the buckling and free vibration analysis of a sandwich plate with viscoelastic core and functionally graded material constraining lamina under high temperature environment. The first-order shear deformation theory is used for the finite element formulation of the plate. Along with the shear deformation, the longitudinal and transverse deformation of the core is also taken into account. The rise in the external temperature is found to reduce the critical buckling loads and fundamental frequencies, and to increase the corresponding modal loss factors. Various parametric studies such as effect of aspect ratio, core thickness ratio and volume fraction index on static and dynamic behaviour of the sandwich plate are also examined.

2017 ◽  
Vol 17 (10) ◽  
pp. 1750114 ◽  
Author(s):  
Shince. V. Joseph ◽  
S. C. Mohanty

Free vibration analysis of a sandwich plate with viscoelastic material core and functionally graded material (FGM) constraining layer under centrifugal force field is investigated herein. One edge of the sandwich plate is fixed to a rotating hub. The first-order shear deformation theory (FSDT) is used in the finite element modeling of the problem. The effects of strains due to the longitudinal and transverse deformations are also considered in addition to the shear deformation of the core. Various parametric studies are carried out to examine the effects of volume fraction index, setting angle, hub radius and rotational speed on the vibration characteristics of the sandwich plate. It is found that the fundamental frequency of the plate decreases with an increase in the volume fraction index of the FGM layer, viscoelastic core thickness and setting angle. The first mode loss factor increases with respect to the increasing volume fraction index. Increase in rotational speed and hub radius lead to an increase in the natural frequencies and a decrease in the modal loss factors.


Author(s):  
Shince V Joseph ◽  
SC Mohanty

The present study is concerned with the free vibration and buckling analysis of a skew sandwich plate with a viscoelastic material core fixed between a functionally graded material constraining layer and a base layer of elastic material. The sandwich plate theory is followed to obtain the governing equations of motion in which the displacement fields of the viscoelastic core are assumed to have a linear variation between those of the two face layers. Finite element method based on first-order shear deformation theory is used to develop the governing equations of motion of the plate. The effects of different parameters such as skew angle, aspect ratio, thickness ratio, and volume fraction index on static and dynamic characteristics of the plate are examined. The increase in the skew angle has increasing effect on both natural the frequencies and critical buckling loads, whereas the fundamental loss factor decreases. The volume fraction index and various boundary conditions also have significant effects on the static and dynamic behavior of the plate.


Author(s):  
Le Kha Hoa ◽  
Pham Van Vinh ◽  
Nguyen Dinh Duc ◽  
Nguyen Thoi Trung ◽  
Le Truong Son ◽  
...  

A novel nonlocal shear deformation theory is established to investigate functionally graded nanoplates. The significant benefit of this theory is that it consists of only one unknown variable in its displacement formula and governing differential equation, but it can take into account both the quadratic distribution of the shear strains and stresses through the plate thickness as well as the small-scale effects on nanostructures. The numerical solutions of simply supported rectangular functionally graded material nanoplates are carried out by applying the Navier procedure. To indicate the accuracy and convergence of this theory, the present solutions have been compared with other published results. Furthermore, a deep parameter study is also carried out to exhibit the influence of some parameters on the response of the functionally graded material nanoplates.


2020 ◽  
pp. 107754632095166
Author(s):  
Chih-Chiang Hong

The effects of third-order shear deformation theory and varied shear correction coefficient on the vibration frequency of thick functionally graded material cylindrical shells with fully homogeneous equation under thermal environment are investigated. The nonlinear coefficient term of displacement field of third-order shear deformation theory is included to derive the fully homogeneous equation under free vibration of functionally graded material cylindrical shells. The determinant of the coefficient matrix in dynamic equilibrium differential equations under free vibration can be represented into the fully fifth-order polynomial equation, thus the natural frequency can be found. Two parametric effects of environment temperature and functionally graded material power law index on the natural frequency of functionally graded material thick cylindrical shells with and without the nonlinear coefficient term of displacement fields are computed and investigated.


2013 ◽  
Vol 05 (04) ◽  
pp. 1350041 ◽  
Author(s):  
M.N.A. GULSHAN TAJ ◽  
ANUPAM CHAKRABARTI

In the present study, an attempt has been made to present the Co finite element formulation based on third order shear deformation theory for buckling analysis of functionally graded material skew plate under thermo-mechanical environment. Here, prime emphasis has been given to study the influence of skew angle on the buckling behavior of functionally graded plate. Two dissimilar homogenization schemes, namely Mori–Tanaka scheme and Voigt rule of mixture are employed to sketch their influence for the interpretation of data. Temperature-dependent material properties of the constituents of the plate are considered to perform thermal analysis. Numerical examples are solved using different mixture of ceramic and metal plates to generate the new results and relative imperative conclusions are highlighted. The roles played by the different factors like loading condition, volume fraction index, skew angle, boundary condition, aspect ratio, thickness ratio and homogenization schemes on buckling behavior of the FGM skew plates are presented in the form of tables and figures.


Author(s):  
S Parida ◽  
SC Mohanty

In the present article, a higher order shear deformation theory is used to develop a finite element model for the free vibration analysis of a rotating functionally graded material plate in the thermal environment. The model is based on an eight-noded isoparametric element with seven degrees-of-freedom per node. The material properties are temperature dependent and graded along its thickness according to a simple power law distribution in terms of volume fraction of the constituents. The general displacement equation provides C0 continuity, and the transverse shear strain undergoes parabolic variation through the thickness of the plate. Therefore, the shear correction factor is not used in this theory. The obtained results are compared with the published results in the literature to determine the accuracy of the method. The effects of various parameters like hub radius, rotation speed, aspect ratio, thickness ratio, volume fraction index, and temperature on the frequency of rotating plate are investigated.


Author(s):  
Ismail Bensaid ◽  
Ahmed Amine Daikh ◽  
Ahmed Drai

The investigation conducted in this paper aims to study free vibration and buckling behaviors of size-dependent functionally graded sandwich nanobeams. In order to take into account the small size effects, nonlocal elasticity theory of Eringen's is incorporated. Material properties of the functionally graded sandwich beams are supposed to change continuously through the thickness direction according to two forms of the volume fraction of constituents by power law functionally graded material and sigmoid law functionally graded material. These rules are modified to consider the effect of porosity, which covers four kinds of porosity distributions. Two types of sandwich nanobeams were provided: (a) homogeneous core and functionally graded skins and (b) functionally graded core and homogeneous skins. Third-order shear deformation theory without any shear correction factor in conjunction with Hamilton's principle is used to extract the governing equations of motions of porous functionally graded sandwich nanobeams and then solved analytically for two hinged ends. The effects of nonlocal parameter, length to thickness ratios, material graduation index, amount of porosity, porosity distribution shape, on the nondimensional frequency and critical buckling load of the functionally graded sandwich nanobeams made of porous materials are exhibited by a parametric study.


2009 ◽  
Vol 01 (04) ◽  
pp. 667-707 ◽  
Author(s):  
ASHRAF M. ZENKOUR

A thermomechanical bending analysis for a simply supported, rectangular, functionally graded material sandwich plate subjected to a transverse mechanical load and a through-the-thickness thermal load is presented using the refined sinusoidal shear deformation plate theory. The present shear deformation theory includes the effect of both shear and normal deformations and it is simplified by enforcing traction-free boundary conditions at the plate faces. Material properties and thermal expansion coefficient of the sandwich plate faces are assumed to be graded in the thickness direction according to a simple power-law distribution in terms of the volume fractions of the constituents. The core layer is still homogeneous and made of an isotropic material. The equilibrium equations of different sandwich plates are given based on various plate theories. A number of examples are solved to illustrate the numerical results concern thermo-mechanical bending response of functionally graded rectangular sandwich plates. The influences played by transversal shear and normal deformations, plate aspect ratio, side-to-thickness ratio, volume fraction distributions, and thermal and mechanical loads are investigated.


Sign in / Sign up

Export Citation Format

Share Document