BUCKLING ANALYSIS OF FUNCTIONALLY GRADED SKEW PLATES: AN EFFICIENT FINITE ELEMENT APPROACH

2013 ◽  
Vol 05 (04) ◽  
pp. 1350041 ◽  
Author(s):  
M.N.A. GULSHAN TAJ ◽  
ANUPAM CHAKRABARTI

In the present study, an attempt has been made to present the Co finite element formulation based on third order shear deformation theory for buckling analysis of functionally graded material skew plate under thermo-mechanical environment. Here, prime emphasis has been given to study the influence of skew angle on the buckling behavior of functionally graded plate. Two dissimilar homogenization schemes, namely Mori–Tanaka scheme and Voigt rule of mixture are employed to sketch their influence for the interpretation of data. Temperature-dependent material properties of the constituents of the plate are considered to perform thermal analysis. Numerical examples are solved using different mixture of ceramic and metal plates to generate the new results and relative imperative conclusions are highlighted. The roles played by the different factors like loading condition, volume fraction index, skew angle, boundary condition, aspect ratio, thickness ratio and homogenization schemes on buckling behavior of the FGM skew plates are presented in the form of tables and figures.

2014 ◽  
Vol 6 ◽  
pp. 632825 ◽  
Author(s):  
Zainudin A. Rasid ◽  
Rizal Zahari ◽  
Amran Ayob

Shape memory alloy (SMA) wires were embedded within laminated composite plates to take advantage of the shape memory effect property of the SMA in improving post-buckling behavior of composite plates. A nonlinear finite element formulation was developed for this study. The plate-bending formulation used in this study was developed based on the first order shear deformation theory, where the von Karman's nonlinear moderate strain terms were added to the strain equations. The effect of the SMA was captured by adding recovery stress term in the constitutive equation of the SMA composite plates. Values of the recovery stress of the SMA were determined using Brinson's model. Using the principle of virtual work and the total Lagrangian approach, the final finite element nonlinear governing equation for the post-buckling of SMA composite plates was derived. Buckling and post-buckling analyses were then conducted on the symmetric angle-ply and cross-ply SMA composite plates. The effect of several parameters such as the activation temperature, volume fraction, and the initial strain of the SMA on the post-buckling behavior of the SMA composite plates were studied. It was found that significant improvements in the post-buckling behavior for composite plates can be attained.


Author(s):  
Abhilash Karakoti ◽  
Mahesh Podishetty ◽  
Shashank Pandey ◽  
Vishesh Ranjan Kar

This work for the first time presents the effect of porosity and skew edges on the transient response of functionally graded material (FGM) sandwich plates using a layerwise finite element formulation. Two configurations of FGM sandwich plates are considered. In the first configuration, the top and the bottom layers are made of the FGM and the core is made of pure metal, whereas in the second configuration, the bottom, core and the top layers are made of pure metal, FGM and pure ceramic, respectively. Four micromechanics models based on the rule of mixture are used to model porosity for these two configurations of FGM sandwich plates. A layerwise theory based on a first-order shear deformation theory for each layer that maintains the displacement continuity at the layer interface is used for the present investigation. An eight-noded isoparametric element with nine degrees of freedom per node is used to develop the finite element model (FEM). The governing equations for the present investigation are derived using Hamilton’s principle. A wide range of comparison studies are presented to establish the accuracy of the present FEM formulation. It has been shown here that the parameters like skew angle, porosity coefficient, volume fraction index, core to facesheet thickness ratio and boundary conditions have a significant effect on the transient response of FGM sandwich plates. Also, the present finite element formulation is simple and accurate.


2017 ◽  
Vol 21 (4) ◽  
pp. 1557-1577 ◽  
Author(s):  
Shince V Joseph ◽  
SC Mohanty

This article deals with the buckling and free vibration analysis of a sandwich plate with viscoelastic core and functionally graded material constraining lamina under high temperature environment. The first-order shear deformation theory is used for the finite element formulation of the plate. Along with the shear deformation, the longitudinal and transverse deformation of the core is also taken into account. The rise in the external temperature is found to reduce the critical buckling loads and fundamental frequencies, and to increase the corresponding modal loss factors. Various parametric studies such as effect of aspect ratio, core thickness ratio and volume fraction index on static and dynamic behaviour of the sandwich plate are also examined.


Author(s):  
Sanjay Singh Tomar ◽  
Mohammad Talha

This work presents an investigation on the flexural and vibration behavior of imperfection sensitive higher order functionally graded material skew sandwich plates in thermal environment. Material properties have been assumed to be temperature dependent and graded in transverse direction following the power law distribution. Reddy’s higher order shear deformation theory has been used to model displacement field kinematics of skew sandwich plate. Variational principle has been used for deriving the governing equations. Finite element methodology has been adopted to discretize plate domain. Convergence and comparison studies have been performed to demonstrate the reliability of present formulation. Effect of various system parameters such as thickness ratio, volume fraction index, skew angle, imperfection parameter, and boundary conditions on the flexural and vibration response have been investigated.


2014 ◽  
Vol 684 ◽  
pp. 158-164 ◽  
Author(s):  
Sugirtha Singh J. Monslin ◽  
Thangaratnam R. Kari

Finite element formulation using semiloof shell element for initially stressed vibration of Functionally Graded Material (FGM) plates and shells are presented. The influence of volume fraction index on the vibration frequencies of thin functionally graded plates and shells and variation of temperature on frequency are studied. New results are presented for initially stressed vibration of FGM plates and shells.


2021 ◽  
Vol 264 ◽  
pp. 113712 ◽  
Author(s):  
Mohamed-Ouejdi Belarbi ◽  
Mohammed-Sid-Ahmed Houari ◽  
Ahmed Amine Daikh ◽  
Aman Garg ◽  
Tarek Merzouki ◽  
...  

Nanomaterials ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 419 ◽  
Author(s):  
Abdullah H. Sofiyev ◽  
Francesco Tornabene ◽  
Rossana Dimitri ◽  
Nuri Kuruoglu

The buckling behavior of functionally graded carbon nanotube reinforced composite conical shells (FG-CNTRC-CSs) is here investigated by means of the first order shear deformation theory (FSDT), under a combined axial/lateral or axial/hydrostatic loading condition. Two types of CNTRC-CSs are considered herein, namely, a uniform distribution or a functionally graded (FG) distribution of reinforcement, with a linear variation of the mechanical properties throughout the thickness. The basic equations of the problem are here derived and solved in a closed form, using the Galerkin procedure, to determine the critical combined loading for the selected structure. First, we check for the reliability of the proposed formulation and the accuracy of results with respect to the available literature. It follows a systematic investigation aimed at checking the sensitivity of the structural response to the geometry, the proportional loading parameter, the type of distribution, and volume fraction of CNTs.


2021 ◽  
Vol 8 (4) ◽  
pp. 691-704
Author(s):  
M. Janane Allah ◽  
◽  
Y. Belaasilia ◽  
A. Timesli ◽  
A. El Haouzi ◽  
...  

In this work, an implicit algorithm is used for analyzing the free dynamic behavior of Functionally Graded Material (FGM) plates. The Third order Shear Deformation Theory (TSDT) is used to develop the proposed model. In this contribution, the formulation is written without any homogenization technique as the rule of mixture. The Hamilton principle is used to establish the resulting equations of motion. For spatial discretization based on Finite Element Method (FEM), a quadratic element with four and eight nodes is adopted using seven degrees of freedom per node. An implicit algorithm is used for solving the obtained problem. To study the accuracy and the performance of the proposed approach, we present comparisons with literature and laminate composite modeling results for vibration natural frequencies. Otherwise, we examine the influence of the exponent of the volume fraction which reacts the plates "P-FGM" and "S-FGM". In addition, we study the influence of the thickness on "E-FGM" plates.


Author(s):  
Tran Trung Thanh ◽  
Tran Van Ke ◽  
Pham Quoc Hoa ◽  
Tran The Van ◽  
Nguyen Thoi Trung

The paper aims to extend the ES-MITC3 element, which is an integration of the edge-based smoothed finite element method (ES-FEM) with the mixed interpolation of tensorial components technique for the three-node triangular element (MITC3 element), for the buckling analysis of the FGM variable-thickness plates subjected to mechanical loads. The proposed ES-MITC3 element is performed to eliminate the shear locking phenomenon and to enhance the accuracy of the existing MITC3 element. In the ES-MITC3 element, the stiffness matrices are obtained by using the strain smoothing technique over the smoothing domains formed by two adjacent MITC3 triangular elements sharing the same edge. The numerical results demonstrated that the proposed method is reliable and more accurate than some other published solutions in the literature. The influences of some geometric parameters, material properties on the stability of FGM variable-thickness plates are examined in detail.


2017 ◽  
Vol 29 (7) ◽  
pp. 1430-1455 ◽  
Author(s):  
Vinyas Mahesh ◽  
Piyush J Sagar ◽  
Subhaschandra Kattimani

In this article, the influence of full coupling between thermal, elastic, magnetic, and electric fields on the natural frequency of functionally graded magneto-electro-thermo-elastic plates has been investigated using finite element methods. The contribution of overall coupling effect as well as individual elastic, piezoelectric, piezomagnetic, and thermal phases toward the stiffness of magneto-electro-thermo-elastic plates is evaluated. A finite element formulation is derived using Hamilton’s principle and coupled constitutive equations of magneto-electro-thermo-elastic material. Based on the first-order shear deformation theory, kinematics relations are established and the corresponding finite element model is developed. Furthermore, the static studies of magneto-electro-elastic plate have been carried out by reducing the fully coupled finite element formulation to partially coupled state. Particular attention has been paid to investigate the influence of thermal fields, electric fields, and magnetic fields on the behavior of magneto-electro-elastic plate. In addition, the effect of pyrocoupling on the magneto-electro-elastic plate has also been studied. Furthermore, the effect of geometrical parameters such as aspect ratio, length-to-thickness ratio, stacking sequence, and boundary conditions is studied in detail. The investigation may contribute significantly in enhancing the performance and applicability of functionally graded magneto-electro-thermo-elastic structures in the field of sensors and actuators.


Sign in / Sign up

Export Citation Format

Share Document