Contact stress and rolling contact fatigue of indented contacts: Part II, rolling element bearing life calculation and experimental data of indent geometries

Author(s):  
N Biboulet ◽  
L Houpert ◽  
AA Lubrecht ◽  
C Hager
2021 ◽  
Author(s):  
Graham Keep ◽  
Mark Wolka ◽  
Beth Brazitis

Abstract Through hardened steel ball fatigue failure is an atypical mode of failure in a rolling element bearing. A recent full-scale bench test resulted in ball spalling well below calculated bearing life. Subsequent metallurgical analysis of the spalled balls found inferior microstructure and manufacturing methods. Microstructural analysis revealed significant carbide segregation and inclusions in the steel. These can result from substandard spheroidized annealing and steel making practices. In addition, the grain flow of the balls revealed a manufacturing anomaly which produced a stress riser in the material making it more susceptible to crack initiation. The inferior manufactured balls caused at least an 80% reduction in rolling contact fatigue life of the bearing.


1970 ◽  
Vol 92 (3) ◽  
pp. 406-412 ◽  
Author(s):  
D. F. Wilcock ◽  
L. W. Winn

A new bearing concept is described which offers the almost unlimited life of the fluid film bearing combined with the free starting, stopping, and oil system failure characteristics of the rolling element bearing. This new bearing type is termed the Hybrid Boost Bearing. It is envisioned as having application in jet engines to extend bearing life, and in land turbine equipment as a means of providing high overload capacity.


Author(s):  
N. S. Feng ◽  
E. J. Hahn

Non-linearity effects in rolling element bearings arise from two sources, viz. the Hertzian force deformation relationship and the presence of clearance between the rolling elements and the bearing races. Assuming that centrifugal effects may be neglected and that the presence of axial preload is appropriately reflected in a corresponding change in the radial clearance, this paper analyses a simple test rig to illustrate that non-linear phenomena such as synchronous multistable and nonsynchronous motions are possible in simple rigid and flexible rotor systems subjected to unbalance excitation. The equations of motion of the rotor bearing system were solved by transient analysis using fourth order Runge Kutta. Of particular interest is the effect of clearance, governed in practice by bearing specification and the amount of preload, on the vibration behaviour of rotors supported by ball bearings and on the bearing load. It is shown that in the presence of positive clearance, there exists an unbalance excitation range during which the bearing is momentarily not transmitting force owing to contact loss, resulting in rolling element raceway impact with potentially relatively high bearing forces; and indicating that for long bearing life, operation with positive clearance should be avoided in the presence of such unbalance loading. Once the unbalance excitation is high enough to avoid such contact loss, it is the bearings with zero or negative clearance which produce maximum bearing forces.


2019 ◽  
Vol 140 ◽  
pp. 105849 ◽  
Author(s):  
Mostafa El Laithy ◽  
Ling Wang ◽  
Terry J. Harvey ◽  
Bernd Vierneusel ◽  
Martin Correns ◽  
...  

1982 ◽  
Vol 104 (3) ◽  
pp. 283-291 ◽  
Author(s):  
S. H. Loewenthal ◽  
D. W. Moyer ◽  
W. M. Needelman

Fatigue tests were conducted on groups of 65-millimeter bore diameter deep-groove ball bearings in a MIL-L-23699 lubricant under two levels of filtration. In one test series, the oil cleanliness was maintained at an exceptionally high level (better than a class of “00” per NAS 1638) with a 3 micron absolute barrier filter. These tests were intended to determine the “upper limit” in bearing life under the strictest possible lubricant cleanliness conditions. In the tests using a centrifugal oil filter, contaminants of the type found in aircraft engine filters were injected into the filters’ supply line at 125 milligrams per bearing-hour. “Ultra-clean” lubrication produced bearing fatigue lives that were approximately twice that obtained in previous tests with contaminated oil using 3 micron absolute filtration and approximately three times that obtained with 49 micron filtration. It was also observed that the centrifugal oil filter had approximately the same effectiveness as a 30 micron absolute filter in preventing bearing surface damage.


Sign in / Sign up

Export Citation Format

Share Document