scholarly journals Further understanding of rolling contact fatigue in rolling element bearings - A review

2019 ◽  
Vol 140 ◽  
pp. 105849 ◽  
Author(s):  
Mostafa El Laithy ◽  
Ling Wang ◽  
Terry J. Harvey ◽  
Bernd Vierneusel ◽  
Martin Correns ◽  
...  
2010 ◽  
Vol 7 (2) ◽  
pp. 102543 ◽  
Author(s):  
R. H. Vegter ◽  
J. T. Slycke ◽  
John Beswick ◽  
S. W. Dean

2011 ◽  
Vol 133 (4) ◽  
Author(s):  
Nick Weinzapfel ◽  
Farshid Sadeghi ◽  
Vasilios Bakolas ◽  
Alexander Liebel

Rolling contact fatigue of rolling element bearings is a statistical phenomenon that is strongly affected by the heterogeneous nature of the material microstructure. Heterogeneity in the microstructure is accompanied by randomly distributed weak points in the material that lead to scatter in the fatigue lives of an otherwise identical lot of rolling element bearings. Many life models for rolling contact fatigue are empirical and rely upon correlation with fatigue test data to characterize the dispersion of fatigue lives. Recently developed computational models of rolling contact fatigue bypass this requirement by explicitly considering the microstructure as a source of the variability. This work utilizes a similar approach but extends the analysis into a 3D framework. The bearing steel microstructure is modeled as randomly generated Voronoi tessellations wherein each cell represents a material grain and the boundaries between them constitute the weak planes in the material. Fatigue cracks initiate on the weak planes where oscillating shear stresses are the strongest. Finite element analysis is performed to determine the magnitude of the critical shear stress range and the depth where it occurs. These quantities exhibit random variation due to the microstructure topology which in turn results in scatter in the predicted fatigue lives. The model is used to assess the influence of (1) topological randomness in the microstructure, (2) heterogeneity in the distribution of material properties, and (3) the presence of inherent material flaws on relative fatigue lives. Neither topological randomness nor heterogeneous material properties alone account for the dispersion seen in actual bearing fatigue tests. However, a combination of both or the consideration of material flaws brings the model’s predictions within empirically observed bounds. Examination of the critical shear stress ranges with respect to the grain boundaries where they occur reveals the orientation of weak planes most prone to failure in a three-dimensional sense that was not possible with previous models.


2021 ◽  
pp. 445-496
Author(s):  
Pierre Dupont

Abstract This article is dedicated to the fields of mechanical engineering and machine design. It also intends to give a nonexhaustive view of the preventive side of the failure analysis of rolling-element bearings (REBs) and of some of the developments in terms of materials and surface engineering. The article presents the nomenclature, numbering systems, and worldwide market of REBs as well as provides description of REBs as high-tech machine components. It discusses heat treatments, performance, and properties of bearing materials. The processes involved in the examination of failed bearings are also explained. Finally, the article discusses in detail the characteristics and prevention of the various types of failures of REBs: wear, fretting, corrosion, plastic flow, rolling-contact fatigue, and damage. The article includes an Appendix, which lists REB-related abbreviations, association websites, and ISO standards.


2009 ◽  
Vol 131 (4) ◽  
Author(s):  
Farshid Sadeghi ◽  
Behrooz Jalalahmadi ◽  
Trevor S. Slack ◽  
Nihar Raje ◽  
Nagaraj K. Arakere

Ball and rolling element bearings are perhaps the most widely used components in industrial machinery. They are used to support load and allow relative motion inherent in the mechanism to take place. Subsurface originated spalling has been recognized as one of the main modes of failure for rolling contact fatigue (RCF) of bearings. In the past few decades a significant number of investigators have attempted to determine the physical mechanisms involved in rolling contact fatigue of bearings and proposed models to predict their fatigue lives. In this paper, some of the most widely used RCF models are reviewed and discussed, and their limitations are addressed. The paper also presents the modeling approaches recently proposed by the authors to develop life models and better understanding of the RCF.


2021 ◽  
Author(s):  
Graham Keep ◽  
Mark Wolka ◽  
Beth Brazitis

Abstract Through hardened steel ball fatigue failure is an atypical mode of failure in a rolling element bearing. A recent full-scale bench test resulted in ball spalling well below calculated bearing life. Subsequent metallurgical analysis of the spalled balls found inferior microstructure and manufacturing methods. Microstructural analysis revealed significant carbide segregation and inclusions in the steel. These can result from substandard spheroidized annealing and steel making practices. In addition, the grain flow of the balls revealed a manufacturing anomaly which produced a stress riser in the material making it more susceptible to crack initiation. The inferior manufactured balls caused at least an 80% reduction in rolling contact fatigue life of the bearing.


Author(s):  
F Ville ◽  
S Coulon ◽  
A. A. Lubrecht

Solid contamination of lubricants is one of the main causes of premature rolling contact fatigue of machine elements (e.g. rolling element bearings in automotive gearboxes). Understanding the indentation process (creation of surface defect by debris passing through the contact) and the surface damage initiation allows the prediction of the induced risk. This article summarizes the work of the authors and proposes a risk prediction on the basis of operating conditions and dent geometry.


Sign in / Sign up

Export Citation Format

Share Document