Active Noise Control in a Y-Shaped Duct: Simulation and Experimental Results

1998 ◽  
Vol 5 (1) ◽  
pp. 17-25
Author(s):  
Ronaldo Fernandes Nunes ◽  
José Roberto De França Arruda ◽  
José Maria Campos Dos Santos

There are different approaches to active noise control (ANC). The time domain Filtered-X LMS adaptive control scheme is currently used in most applications. The purpose of this paper is to describe an experiment consisting of a Y-shaped duct with two loudspeakers attached to the two branches of the Y duct. One of the loudspeakers acts as the perturbation source and the other acts as the control source. Tonal noise control is investigated, and control implementation issues such as number of filter weights, value of step-size parameter, and sampling frequency are discussed. The reference signal is taken from the signal sent to the perturbation loudspeaker and the error signal is taken from a microphone that can be placed anywhere along the stem of the Y-shaped duct. Simulations and experimental results are presented. The setup is simple and may be easily implemented for leaching purposes.

2020 ◽  
Vol 11 (1) ◽  
pp. 344
Author(s):  
Pedro Ramos Lorente ◽  
Raúl Martín Ferrer ◽  
Fernando Arranz Martínez ◽  
Guillermo Palacios-Navarro

In the field of active noise control (ANC), a popular method is the modified filtered-x LMS algorithm. However, it has two drawbacks: its computational complexity higher than that of the conventional FxLMS, and its convergence rate that could still be improved. Therefore, we propose an adaptive strategy which aims at speeding up the convergence rate of an ANC system dealing with periodic disturbances. This algorithm consists in combining the organization of the filter weights in a hierarchy of subfilters of shorter length and their sequential partial updates (PU). Our contribution is threefold: (1) we provide the theoretical basis of the existence of a frequency-dependent parameter, called gain in step-size. (2) The theoretical upper bound of the step-size is compared with the limit obtained from simulations. (3) Additional experiments show that this strategy results in a fast algorithm with a computational complexity close to that of the conventional FxLMS.


2021 ◽  
Vol 69 (2) ◽  
pp. 136-145
Author(s):  
S. Roopa ◽  
S.V. Narasimhan

A stable feedback active noise control (FBANC) system with an improved performance in a broadband disturbance environment is proposed in this article. This is achieved by using a Steiglitz-McBride adaptive notch filter (SM-ANF) and robust secondary path identification (SPI) both based on variable step size Griffiths least mean square (LMS) algorithm. The broadband disturbance severely affects not only FBANC input synthesized but also the SPI.TheSM-ANFestimated signal has narrowband component that is utilized for the FBANC input synthesis. Further, the SM-ANF error has broadband component utilized to get the desired signal for SPI. The use of variable step size Griffiths gradient LMS algorithm for SPI enables the removal of broadband disturbance and non-stationary disturbance from the available desired signal for better SPI. For a narrowband noise field, the proposed FBANC improves the convergence rate significantly (20 times) and the noise reduction from 10 dB to 15 dB (50%improvement) over the conventional FBANC (without SM-ANF and variable step size Griffiths LMS adaptation for SPI).


Author(s):  
Ho-Wuk Kim ◽  
Sang-Kwon Lee

FIR filter for a adaptive filter algorithm, is mostly used for an active noise control system. However, FIR filter needs to have more large size of the filter length than it of IIR filter. Therefore, the control system using FIR adaptive filter has slow calculation time. In the active noise control system of the short duct, the reference signal can be affected by the output signal, so IIR filter for ARMA system can be more suitable for the active noise control of the short duct than FIR filter for MA system. In this paper, the recursive LMS filter, which is adaptive IIR filter, is applicated for the active noise control inside the short duct. For faster convergence and more accurate control, a variable step size algorithm is introduced for this recursive LMS filter (R-VSSLMS filter). Using this algorithm and considering the secondary path, the filtered-u R-VSSLMS is conducted successfully on the real experiment in the short duct. The performance of the active control using the filtered-u R-VSSLMS filter, is compared with the performance of the active control using a filtered-x LMS filter.


2016 ◽  
Vol 41 (2) ◽  
pp. 315-322 ◽  
Author(s):  
Krzysztof Mazur ◽  
Marek Pawełczyk

Abstract The active noise-reducing casing developed and promoted by the authors in recent publications have multiple advantages over other active noise control methods. When compared to classical solutions, it allows for obtaining global reduction of noise generated by a device enclosed in the casing. Moreover, the system does not require loudspeakers, and much smaller actuators attached to the casing walls are used instead. In turn, when compared to passive casings, the walls can be made thinner, lighter and with much better thermal transfer than sound-absorbing materials. For active noise control a feedforward structure is usually used. However, it requires an in-advance reference signal, which can be difficult to be acquired for some applications. Fortunately, usually the dominant noise components are due to rotational operations of the enclosed device parts, and thus they are tonal and multitonal. Therefore, it can be adequately predicted and the Internal Model Control structure can be used to benefit from algorithms well developed for feedforward systems. The authors have already tested that approach for a rigid casing, where interaction of the walls was significantly reduced. In this paper the idea is further explored and applied for a light-weight casing, more frequently met in practice, where each vibrating wall of the casing influences all the other walls. The system is verified in laboratory experiments.


Sign in / Sign up

Export Citation Format

Share Document