Improvement of spasticity following intermittent theta burst stimulation in multiple sclerosis is associated with modulation of resting-state functional connectivity of the primary motor cortices

2016 ◽  
Vol 23 (6) ◽  
pp. 855-863 ◽  
Author(s):  
Clémence Boutière ◽  
Caroline Rey ◽  
Wafaa Zaaraoui ◽  
Arnaud Le Troter ◽  
Audrey Rico ◽  
...  

Background: Intermittent theta burst stimulation (iTBS) of the primary motor cortex improves transiently lower limbs spasticity in multiple sclerosis (MS). However, the cerebral mechanisms underlying this effect have never been investigated. Objective: To assess whether modulation of spasticity induced by iTBS is underlined by functional reorganization of the primary motor cortices. Methods: A total of 17 patients with MS suffering from lower limbs spasticity were randomized to receive real iTBS or sham iTBS during the first half of a 5-week indoor rehabilitation programme. Spasticity was assessed using the Modified Ashworth Scale and the Visual Analogue Scale at baseline, after the stimulation session and at the end of the rehabilitation programme. Resting-state functional magnetic resonance imaging (fMRI) was performed at the three time points, and brain functional networks topology was analysed using graph-theoretical approach. Results: At the end of stimulation, improvement of spasticity was greater in real iTBS group than in sham iTBS group ( p = 0.026). iTBS had a significant effect on the balance of the connectivity degree between the stimulated and the homologous primary motor cortex ( p = 0.005). Changes in inter-hemispheric balance were correlated with improvement of spasticity (rho = 0.56, p = 0.015). Conclusion: This longitudinal resting-state fMRI study evidences that functional reorganization of the primary motor cortices may underlie the effect of iTBS on spasticity in MS.

2014 ◽  
Vol 261 ◽  
pp. 177-184 ◽  
Author(s):  
Bimal Lakhani ◽  
David A.E. Bolton ◽  
Veronica Miyasike-daSilva ◽  
Albert H. Vette ◽  
William E. McIlroy

2009 ◽  
Vol 120 (4) ◽  
pp. 796-801 ◽  
Author(s):  
Ying-Zu Huang ◽  
John C. Rothwell ◽  
Chin-Song Lu ◽  
JiunJie Wang ◽  
Yi-Hsin Weng ◽  
...  

2013 ◽  
Vol 6 (2) ◽  
pp. 166-174 ◽  
Author(s):  
Ya-Fang Hsu ◽  
Ying-Zu Huang ◽  
Yung-Yang Lin ◽  
Chih-Wei Tang ◽  
Kwong-Kum Liao ◽  
...  

2021 ◽  
Vol 15 ◽  
Author(s):  
Jack Jiaqi Zhang ◽  
Kenneth N. K. Fong

Mirror training (MT) is an observation-based motor learning strategy. Intermittent theta burst stimulation (iTBS) is an accelerated form of excitatory repetitive transcranial magnetic stimulation (rTMS) that has been used to enhance the cortical excitability of the motor cortices. This study aims to investigate the combined effects of iTBS with MT on the resting state functional connectivity at alpha frequency band in healthy adults. Eighteen healthy adults were randomized into one of three groups—Group 1: iTBS plus MT, Group 2: iTBS plus sham MT, and Group 3: sham iTBS plus MT. Participants in Groups 1 and 3 observed the mirror illusion of the moving (right) hand in a plain mirror for four consecutive sessions, one session/day, while participants in Group 2 received the same training with a covered mirror. Real or sham iTBS was applied daily over right motor cortex prior to the training. Resting state electroencephalography (EEG) at baseline and post-training was recorded when participants closed their eyes. The mixed-effects model demonstrated a significant interaction effect in the coherence between FC4 and C4 channels, favoring participants in Group 1 over Group 3 (Δβ = −0.84, p = 0.048). A similar effect was also found in the coherence between FC3 and FC4 channels favoring Group 1 over Group 3 (Δβ = −0.43, p = 0.049). In contrast to sham iTBS combined with MT, iTBS combined with MT may strengthen the functional connectivity between bilateral premotor cortices and ipsilaterally within the motor cortex of the stimulated hemisphere. In contrast to sham MT, real MT, when combined with iTBS, might diminish the connectivity among the contralateral parietal–frontal areas.


2018 ◽  
Author(s):  
Gerard Derosiere ◽  
David Thura ◽  
Paul Cisek ◽  
Julie Duque

AbstractDecisions about actions typically involve a period of deliberation that ends with the commitment to a choice and the motor processes overtly expressing that choice. Previous studies have shown that neural activity in sensorimotor areas, including the primary motor cortex (M1), correlates with deliberation features during action selection. Yet, the causal contribution of these areas to the decision process remains unclear. Here, we investigated whether M1 determines choice commitment, or whether it simply reflects decision signals coming from upstream structures and instead mainly contributes to the motor processes that follow commitment. To do so, we tested the impact of a disruption of M1 activity, induced by continuous theta burst stimulation (cTBS), on the behavior of human subjects in (1) a simple reaction time (SRT) task allowing us to estimate the duration of the motor processes and (2) a modified version of the tokens task (Cisek et al., 2009), which allowed us to estimate subjects’ time of commitment as well as accuracy criterion. The efficiency of cTBS was attested by a reduction in motor evoked potential amplitudes following M1 disruption, as compared to those following a sham stimulation. Furthermore, M1 cTBS lengthened SRTs, indicating that motor processes were perturbed by the intervention. Importantly, all of the behavioral results in the tokens task were similar following M1 disruption and sham stimulation, suggesting that the contribution of M1 to the deliberation process is potentially negligible. Taken together, these findings favor the view that M1 contribution is downstream of the decision process.New and noteworthyDecisions between actions are ubiquitous in the animal realm. Deliberation during action choices entails changes in the activity of the sensorimotor areas controlling those actions, but the causal role of these areas is still often debated. Using continuous theta burst stimulation, we show that disrupting the primary motor cortex (M1) delays the motor processes that follow instructed commitment but does not alter volitional deliberation, suggesting that M1 contribution may be downstream of the decision process.


2019 ◽  
Vol 122 (4) ◽  
pp. 1566-1577 ◽  
Author(s):  
Gerard Derosiere ◽  
David Thura ◽  
Paul Cisek ◽  
Julie Duque

Decisions about actions typically involve a period of deliberation that ends with the commitment to a choice and the motor processes overtly expressing that choice. Previous studies have shown that neural activity in sensorimotor areas, including the primary motor cortex (M1), correlates with deliberation features during action selection. However, the causal contribution of these areas to the decision process remains unclear. Here, we investigated whether M1 determines choice commitment or whether it simply reflects decision signals coming from upstream structures and instead mainly contributes to the motor processes that follow commitment. To do so, we tested the impact of a disruption of M1 activity, induced by continuous theta burst stimulation (cTBS), on the behavior of human subjects in 1) a simple reaction time (SRT) task allowing us to estimate the duration of the motor processes and 2) a modified version of the tokens task (Cisek P, Puskas GA, El-Murr S. J Neurosci 29: 11560–11571, 2009), which allowed us to estimate subjects’ time of commitment as well as accuracy criterion. The efficiency of cTBS was attested by a reduction in motor evoked potential amplitudes following M1 disruption compared with those following a sham stimulation. Furthermore, M1 cTBS lengthened SRTs, indicating that motor processes were perturbed by the intervention. Importantly, all of the behavioral results in the tokens task were similar following M1 disruption and sham stimulation, suggesting that the contribution of M1 to the deliberation process is potentially negligible. Taken together, these findings favor the view that M1 contribution is downstream of the decision process. NEW & NOTEWORTHY Decisions between actions are ubiquitous in the animal realm. Deliberation during action choices entails changes in the activity of the sensorimotor areas controlling those actions, but the causal role of these areas is still often debated. With the use of continuous theta burst stimulation, we show that disrupting the primary motor cortex (M1) delays the motor processes that follow instructed commitment but does not alter volitional deliberation, suggesting that M1 contribution may be downstream of the decision process.


Sign in / Sign up

Export Citation Format

Share Document