Modal parameter identification of a long-span footbridge by forced vibration experiments

2017 ◽  
Vol 20 (5) ◽  
pp. 661-673 ◽  
Author(s):  
Q Wen ◽  
XG Hua ◽  
ZQ Chen ◽  
JM Guo ◽  
HW Niu

Performing forced vibration tests on full-scale structures is the most reliable way of determining the relevant modal parameters in structural dynamics, such as modal frequencies, mode shapes, modal damping, and modal masses. This study describes the modal identification of a double-level curved cable-stayed bridge with separate deck systems for pedestrians and vehicles via forced vibration tests. The steady-state structural responses to sinusoidal excitations produced by an electrodynamic shaker are recorded under varying excitation frequencies, and the frequency response functions are established. The measured frequency response functions are curve fitted to estimate the modal parameters. The numerical simulation of frequency response function–based modal parameter identification of an elastically multi-supported continuous beam structure is carried out, and the emphasis has been placed on the evaluation of the effect of an additional shaker mass, excitation frequency step and range, multi-mode vibration, and noise on identification results. Finally, the modal parameters for the first lateral mode of a double-level curved cable-stayed bridge are identified by forced vibration experiments, and the results are compared with those from ambient vibration tests and free vibration tests. The effect of the unmeasured wind excitation on identification is discussed. It is shown that the effect of ambient vibration is minor for wind velocity of 3–5 m/s. The damping ratios identified by forced and free vibration tests are comparable, while those from ambient vibration are subject to large variations. The modal mass obtained from forced vibration tests is in good agreement with finite element prediction, which provides design basis for mass-type dampers.

2017 ◽  
Vol 17 (09) ◽  
pp. 1750106 ◽  
Author(s):  
Zhouquan Feng ◽  
Wenai Shen ◽  
Zhengqing Chen

This paper presents an improved method called the consistent multilevel random decrement technique in conjunction with eigensystem realization algorithm (RDT-ERA) for modal parameter identification of linear dynamic systems using the ambient vibration data. The conventional RDT-ERA is briefly revisited first and the problem of triggering level selection in the RDT is thoroughly studied. Due to the use of a single triggering level by the conventional RDT-ERA, an inappropriate triggering level may produce poor random decrement (RD) functions, thereby yielding a poor estimate of modal parameters. In the proposed consistent multilevel RDT-ERA, multiple triggering levels are used and a consistency analysis is proposed to sift out the RD functions that deviate largely from the majority of the RD functions. Then the ERA is applied to the retained RD functions for modal parameter identification. Subsequently, a similar consistency analysis is conducted on the identified modal parameters to sift out the outliers. Finally, the final estimates of the modal parameters are calculated using weighted averaging with the weights set proportional to the number of RD segments extracted from the corresponding triggering levels. The proposed method is featured by the fact that the information from the signal is fully utilized using multiple triggering levels and the outliers are sifted out using consistency analysis, thus making the identified result more accurate and reliable. The effectiveness and accuracy of the method have been demonstrated in the examples using the simulated data and experimental data.


2017 ◽  
Vol 2017 ◽  
pp. 1-20 ◽  
Author(s):  
Jun Ma ◽  
Shinji Nakata ◽  
Akihito Yoshida ◽  
Yukio Tamura

Full-scale tests on a one-story steel frame structure with a typical precast cladding system using ambient and free vibration methods are described in detail. The cladding system is primarily composed of ALC (Autoclaved Lightweight Concrete) external wall cladding panels, gypsum plasterboard interior linings, and window glazing systems. Ten test cases including the bare steel frame and the steel frame with addition of different parts of the precast cladding system are prepared for detailed investigations. The amplitude-dependent dynamic characteristics of the test cases including natural frequencies and damping ratios determined from the tests are presented. The effects of the ALC external wall cladding panels, the gypsum plasterboard interior linings, and the window glazing systems on the stiffness and structural damping of the steel frame are discussed in detail. The effect of the precast cladding systems on the amplitude dependency of the dynamic characteristics and the tendencies of the dynamic parameters with respect to the structural response amplitude are investigated over a wide range. Furthermore, results estimated from the ambient vibration method are compared with those from the free vibration tests to evaluate the feasibility of the ambient vibration method.


2015 ◽  
Vol 752-753 ◽  
pp. 1029-1034
Author(s):  
Asnizah Sahekhaini ◽  
Pauziah Muhamad ◽  
Masayuki Kohiyama ◽  
Aminuddin Abu ◽  
Lee Kee Quen ◽  
...  

This paper presents a wavelet-based method of identification modal parameter and damage detection in a free vibration response. An algorithm for modal parameter identification and damage detection is purposed and complex Morlet wavelet is chosen as an analysis wavelet function. This paper only focuses on identification of natural frequencies of the structural system. The method utilizes both undamaged and damage experiment data of free vibration response of the truss structure system. Wavelet scalogram is utilizes for damage detection. The change of energy components for undamaged and damage structure is investigated from the plot of wavelet scalogram which corresponded to the detection of damage.


2018 ◽  
Vol 19 (01) ◽  
pp. 1940010 ◽  
Author(s):  
Yan-Chun Ni ◽  
Qi-Wei Zhang ◽  
Jian-Feng Liu

Modal identification aims at identifying the dynamic properties including natural frequency, damping ratio, and mode shape, which is an important step in further structural damage detection, finite element model updating, and condition assessment. This paper presents the work on the investigation of the dynamic characteristics of a long-span cable-stayed bridge-Sutong Bridge by a Bayesian modal identification method. Sutong Bridge is the second longest cable-stayed bridge in the world, situated on the Yangtze River in Jiangsu Province, China, with a total length of 2 088[Formula: see text]m. A short-term nondestructive on-site vibration test was conducted to collect the structural response and determine the actual dynamic characteristics of the bridge before it was opened to traffic. Due to the limited number of sensors, multiple setups were designed to complete the whole measurement. Based on the data collected in the field tests, modal parameters were identified by a fast Bayesian FFT method. The first three modes in both vertical and transverse directions were identified and studied. In order to obtain modal parameter variation with temperature and vibration levels, long-term tests have also been performed in different seasons. The variation of natural frequency and damping ratios with temperature and vibration level were investigated. The future distribution of the modal parameters was also predicted using these data.


1990 ◽  
Vol 112 (4) ◽  
pp. 297-303 ◽  
Author(s):  
G. Moe ◽  
Z.-J. Wu

This paper reports an extensive program of forced and free vibration tests on a single circular cylinder moving mainly perpendicularly to a uniform current. For both free and forced vibration tests, two cases were investigated: one in which the cylinder was restrained in the in-line direction and the other in which it was supported on suitable springs. The cross-flow vibrational response and hydrodynamic forces on the cylinder were measured. Large variations of motion frequency in the “lock-in” range were found from the free vibration tests. This leads to two different definitions of reduced velocity, namely, a so-called nominal reduced velocity based on one reference frequency and the true reduced velocity based on the actual vibration frequency. When different results are compared, the true reduced velocity should be used. The forced vibration tests showed, as may be expected, that the transverse force in the “lock-in” range on the average will add energy to the cylinder at moderate motion amplitudes and subtract energy at large amplitudes. Some conditions resulting in a steady-state vibration of a flexibly mounted cylinder were analyzed. The actual force traces also show very large and apparently random deviations from the average force amplitude. The results from the forced and the free vibration tests are consistent with each other if the true reduced velocity and reduced amplitude are the same.


2020 ◽  
Vol 2020 ◽  
pp. 1-21
Author(s):  
Tianxu Zhu ◽  
Chaoping Zang ◽  
Gengbei Zhang

The measured frequency response functions (FRFs) in the modal test are usually contaminated with noise that significantly affects the modal parameter identification. In this paper, a modal peak-based Hankel-SVD (MPHSVD) method is proposed to eliminate the noise contaminated in the measured FRFs in order to improve the accuracy of the identification of modal parameters. This method is divided into four steps. Firstly, the measured FRF signal is transferred to the impulse response function (IRF), and the Hankel-SVD method that works better in the time domain rather than in the frequency domain is further applied for the decomposition of component signals. Secondly, the iteration of the component signal accumulation is conducted to select the component signals that cover the concerned modal features, but some component signals of the residue noise may also be selected. Thirdly, another iteration considering the narrow frequency bands near the modal peak frequencies is conducted to further eliminate the residue noise and get the noise-reduced FRF signal. Finally, the modal identification method is conducted on the noise-reduced FRF to extract the modal parameters. A simulation of the FRF of a flat plate artificially contaminated with the random Gaussian noise and the random harmonic noise is implemented to verify the proposed method. Afterwards, a modal test of a flat plate under the high-temperature condition was undertaken using scanning laser Doppler vibrometry (SLDV). The noise reduction and modal parameter identification were exploited to the measured FRFs. Results show that the reconstructed FRFs retained all of the modal features we concerned about after the noise elimination, and the modal parameters are precisely identified. It demonstrates the superiority and effectiveness of the approach.


1993 ◽  
Vol 20 (5) ◽  
pp. 801-813 ◽  
Author(s):  
Yin Chen ◽  
A. S. J. Swamidas

Strain gauges, along with an accelerometer and a linear variable displacement transducer, were used in the modal testing to detect a crack in a tripod tower platform structure model. The experimental results showed that the frequency response function of the strain gauge located near the crack had the most sensitivity to cracking. It was observed that the amplitude of the strain frequency response function at resonant points had large changes (around 60% when the crack became a through-thickness crack) when the crack grew in size. By monitoring the change of modal parameters, especially the amplitude of the strain frequency response function near the critical area, it would be very easy to detect the damage that occurs in offshore structures. A numerical computation of the frequency response functions using finite element method was also performed and compared with the experimental results. A good consistency between these two sets of results has been found. All the calculations required for the experimental modal parameters and the finite element analysis were carried out using the computer program SDRC-IDEAS. Key words: modal testing, cracking, strain–displacement–acceleration frequency response functions, frequency–damping–amplitude changes.


Sign in / Sign up

Export Citation Format

Share Document