Experimental study on the seismic behavior of steel-reinforced ultra-high-strength concrete frame joints with cyclic loads

2017 ◽  
Vol 21 (2) ◽  
pp. 270-286 ◽  
Author(s):  
Wei Liu ◽  
Jinqing Jia
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Wang Tingyan ◽  
Zhou Yun ◽  
Zhang Junwei

In this paper, the seismic behavior of fiber-reinforced polymer (FRP) strengthened and unstrengthened steel fiber-reinforced high-strength concrete frame joints under low cyclic loading was tested. Then, the nonlinear finite element program was used to simulate the seismic behavior of FRP strengthened and unstrengthened steel fiber-reinforced high-strength concrete frame joints under low cyclic repeated load. The influence of FRP bond direction on the seismic behavior of steel fiber-reinforced high-strength concrete frame joints was studied. Through the comparison of the test values and numerical simulation values of the hysteretic curve, skeleton curve, energy dissipation capacity, displacement ductility, bearing capacity degradation, stiffness degradation, and other performance indexes of frame joints, the rule was obtained. The results showed that the 45° bonding direction of carbon fiber cloth is better than the 0° bonding direction, and the digital simulation results are in good agreement with the test results. Therefore, the constitutive model, element, end constraint, and loading method used in the finite element numerical simulation of this paper were reasonable, which can provide reference for the similar research in the future.


2012 ◽  
Vol 238 ◽  
pp. 838-843 ◽  
Author(s):  
Ting Yan Wang ◽  
Jun Wei Zhang ◽  
Dan Ying Gao

By studying the two high-strength concrete frame joints by means of experimental investigate and finite element analysis with the low cycle reversed loading method, it discussed the influence of the steel fiber on the seismic behavior of the high-strength frame joints. The result shows that, mixed with steel fiber can enhance the constraint of the concrete at the joint core area, improve the seismic behavior. Amount of steel fiber can replace part of the stirrup.


2013 ◽  
Vol 743 ◽  
pp. 39-44
Author(s):  
Yunita Idris ◽  
Togay Ozbakkloglu

This paper reports on part of an ongoing experimental program at The University of Adelaide on the seismic behavior of high-strength concrete (HSC)-filled fiber reinforced polymer (FRP) tubes (HSCFFTs). The results from three square concrete-filled FRP tube (CFFT) columns that were tested under combined constant axial compression and reversed-cyclic lateral loading are presented. The main parameters of the experimental study included the axial load level, concrete strength, and FRP tube corner radius. The results indicate that square HSCFFT columns are capable of developing very high inelastic deformation capacities under simulated seismic loading. The results also indicate that increasing the corner radius beyond a certain threshold value provides no increase in column lateral drift capacities. It was observed that column deformability decreased with an increase in axial load level (P/Po) and concrete compressive strength (fc). The results of the experimental program are presented together with a discussion on the influence of the main parameters on the seismic behavior of CFFT columns.


2013 ◽  
Vol 88 ◽  
pp. 206-219 ◽  
Author(s):  
Jian-Guo Nie ◽  
Hong-Song Hu ◽  
Jian-Sheng Fan ◽  
Mu-Xuan Tao ◽  
Sheng-Yong Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document