Seismic response characteristics of multi-story subway station through shaking table test

2021 ◽  
pp. 136943322199329
Author(s):  
Zhiyi Chen ◽  
Pengfei Huang ◽  
Wei Chen

A series of shaking table tests were carried out to investigate the seismic response characteristics of a multi-story subway station. Dynamic responses, including accelerations of the soils and the underground structure, layer drift, dynamic earth pressure, and lateral deformation of soils were recorded and analyzed. Several seismic characteristics of multi-story subway station structures are figured out. It is found that in addition to the racking deformation, the rotation vibration is observed for the multi-story subway station subjected to acceleration waves. From the viewpoint of frequency, the low-frequency component and high-frequency component of the acceleration response of the subway station represent the translation and rotation component of the multi-story subway structure, respectively. In addition, the rotation vibration of the deep-depth structure leads to the local squeezing and detachment from the surrounding soils alternately at both top and bottom ends of the sidewalls. This results in the hump-shaped distribution of dynamic earth pressure. The racking deformation of the multi-story subway station has a linear relationship with the dynamic earth pressure at a certain area along the sidewall, where the top of hump-shaped distribution of dynamic earth pressure is.

2017 ◽  
Vol 11 (05) ◽  
pp. 1750020 ◽  
Author(s):  
Ma Xianfeng ◽  
Wang Guobo ◽  
Wu Jun ◽  
Ji Qianqian

Shaking table tests were conducted on typical models of subway structures subjected to several seismic shaking time histories to study seismic response of subway structures in soft ground as well as to provide data for validation of seismic design methods for underground structure. Three types of tests were presented herein, namely green field test, subway station test, and test for joint structure between subway station and tunnel. The similitude and modeling aspects of the 1g shaking table test are discussed. The seismic response of Shanghai clay in different depths was examined under different input waves to understand the acceleration amplification feature in both green field and in the presence of underground structure. Damage situation was checked on internal sections of both subway station and tunnels by halving the model structure. Structure deformation was investigated in terms of element strain under different earthquake loadings. The findings from this study provides useful pointers for future shaking table tests on underground structures/facilities, and the seismic response characteristic of underground structure derived from the shaking table test could be helpful for validating seismic design method for subway station.


2018 ◽  
Vol 2018 ◽  
pp. 1-14
Author(s):  
Xuelei Cheng ◽  
Chunyi Cui ◽  
Zongguang Sun ◽  
Jinhong Xia ◽  
Guangbing Wang

This paper investigates shaking table test (1g) and numerical simulation (fully coupled) of vertically propagating shear waves for saturated soft free field. A large-scale shaking table model test was performed to study seismic response characteristics of saturated soft soil free field. According to test results of seismic response features of free field system in saturated soft soil, the free field nonlinearity fully coupled numerical model of dynamical effective stress of saturated soft soil was established using OpenSEES, based on the u-p formulations of dynamic consolidation equation as well as effective stress solution method for saturated two-phase media. The numerical simulation of the free field seismic response of saturated soft soil under various test conditions was performed and the calculated results were compared with the shaking table test results. The results show the following. (1) With the increase of input ground motion intensity, the characteristic frequency of the saturated soft free ground decreases and the damping ratio increases gradually. (2) The saturated soft soil ground has short period filtering and long period amplification effect on the horizontal input seismic loads. The failure foundation takes on the isolation and shock absorption under strong ground motions. (3) The peak pore pressure ratio of the saturated soft soil ground is located in the shallow buried soil layer, and with the increase of the input ground motion intensity, the advantage of dynamic pore pressure ratio in this area is gradually weakened. (4) The numerical simulation results are consistent with the results of the shaking table test. This fully coupled effective stress numerical method can reasonably simulate the seismic response characteristics of free field in saturated soft soil, which lay the foundation for other more complex parameter extrapolation models of saturated soft soil sites. This research can provide the necessary technical experience for experimental study on non-free field.


2016 ◽  
Vol 10 (02) ◽  
pp. 1640005 ◽  
Author(s):  
Shuang Xing ◽  
Miyamoto Yuji

This paper focuses on the influence of frozen soil on seismic response of a building supported by pile foundation. Firstly, the saturated sand soil is frozen artificially, and then shaking table tests are conducted. Specifically, seismic responses of buildings with different natural frequencies and with different freezing depths of the saturated soil are investigated, respectively. In this study, it is confirmed that for buildings with high rigidity, the effect of interaction becomes smaller when the soil is frozen. Moreover, it is observed that the resonant frequency of frozen ground is closer to the natural frequency of superstructure, and thus the response of the superstructure becomes larger. It is also observed that the bending moment along the pile is remarkably reduced by improving the rigidity of the soil.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Tingjin Liu ◽  
Siyuan Zheng ◽  
Xinwei Tang ◽  
Weixing Xu

In this paper, a shaking table test was conducted to investigate the seismic response of the large-span and column-free subway station in the upper-soft and lower-hard strata. The acceleration of the structure and the soil, the dynamic soil pressure, and the strain response of the subway station were obtained and analyzed. The results demonstrate the reasonable test design as the boundary effect was eliminated. The seismic response of the structure and soil became more severe as the acceleration amplitude of the input motion increased. It is indicated that possible shear damage of the soil and irreversible plastic deformation of the structure might have occurred as the test proceeded. The soft clay had a greater effect on the structure than that of the artificial rock. For the model structure, the tensile strain amplitude in the support region was larger than that in the midspan region. The support regions of the roof slab, lateral wall, and middle slab were the vulnerable components of the model structure during earthquakes.


2019 ◽  
Vol 123 ◽  
pp. 173-184 ◽  
Author(s):  
Su Chen ◽  
Haiyang Zhuang ◽  
Dengzhou Quan ◽  
Jie Yuan ◽  
Kai Zhao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document