Development of a novel nonlinear estimator based on state-dependent Riccati equation technique for articulated vehicles

Author(s):  
Hamze Ahmadi Jeyed ◽  
Ali Ghaffari

In this article, for the first time, a novel nonlinear estimator based on state-dependent Riccati equation filter technique is developed for state estimation of the articulated heavy vehicles. The state-dependent Riccati equation filter approach has a structure similar to the Kalman filter, and compared to the Kalman filter, which is based on linearization, the state-dependent Riccati equation filter is based on parameterization. Also, the state-dependent Riccati equation approach due to the nonuniqueness of the state-dependent coefficient matrix prevented singularity (uncontrollability or unobservability), and this advantage can be used to improve the efficiency of the system. For this purpose, using the Newton's method, a ten-degrees-of-freedom nonlinear model of the articulated heavy vehicle including the longitudinal, lateral and yaw motion of the tractor, the articulation angle, and rotational motion of each wheel is developed. Then, the developed model of articulated heavy vehicle is verified using nonlinear TruckSim model in high-speed lane change maneuver. The vehicle model validation results indicated that the development model is near to the actual articulated vehicle nonlinear model and can be utilized in the nonlinear estimator design. Then, using the state-dependent Riccati equation filter approach, the state variable estimation algorithm based on parametrization is designed and the articulated vehicle states are estimated online. In order to assess the performance and the efficiency of the developed estimator, the simulations with two standard maneuvers including low-speed 90 ° turn maneuver and high-speed lane change maneuver in the slippery road are performed. The simulation results indicate the remarkable impacts of the developed estimator based on state-dependent Riccati equation filter technique on the state estimation of the articulated heavy vehicles.

Author(s):  
Hamze Ahmadi Jeyed ◽  
Ali Ghaffari

In this article, in order to measure the state variables directly in an articulated heavy vehicle, the extended Kalman filter approaches are proposed. For this purpose, using Kane’s method, a nonlinear model is developed for the articulated vehicle, including the motion equations of longitudinal, lateral, and yaw motion of the tractor, and the hitch articulation angle between the tractor and the semi-trailer. Using TruckSim software, the articulated vehicle model is verified through high-velocity lane change maneuver (a single sinusoidal wave with an amplitude of 5° and a frequency of 0.5 Hz) under the dry and slippery road condition. The simulation results showed that the proposed model is close to the real vehicle model and can be used in the estimator development. Then, the state estimation algorithm is designed and implemented using extended Kalman filter for real-time estimation of the states. To evaluate the performance of the extended Kalman filter, simulations with two maneuvers including high-velocity lane change maneuvers in the dry road and slippery road are carried out. The simulation results demonstrate the impressive performance of the extended Kalman filter for state estimation of the articulated vehicle in critical conditions such as the slippery road and the high velocity.


Author(s):  
Naser Esmaeili ◽  
Reza Kazemi ◽  
S Hamed Tabatabaei Oreh

Today, use of articulated long vehicles is surging. The advantages of using large articulated vehicles are that fewer drivers are used and fuel consumption decreases significantly. The major problem of these vehicles is inappropriate lateral performance at high speed. The articulated long vehicle discussed in this article consists of tractor and two semi-trailer units that widely used to carry goods. The main purpose of this article is to design an adaptive sliding mode controller that is resistant to changing the load of trailers and measuring the noise of the sensors. Control variables are considered as yaw rate and lateral velocity of tractor and also first and second articulation angles. These four variables are regulated by steering the axles of the articulated vehicle. In this article after developing and verifying the dynamic model, a new adaptive sliding mode controller is designed on the basis of a nonlinear model. This new adaptive sliding mode controller steers the axles of the tractor and trailers through estimation of mass and moment of inertia of the trailers to maintain the stability of the vehicle. An articulated vehicle has been exposed to a lane change maneuver based on the trailer load in three different modes (low, medium and high load) and on a dry and wet road. Simulation results demonstrate the efficiency of this controller to maintain the stability of this articulated vehicle in a low-speed steep steer and high-speed lane change maneuvers. Finally, the robustness of this controller has been shown in the presence of measurement noise of the sensors. In fact, the main innovation of this article is in the designing of an adaptive sliding mode controller, which by changing the load of the trailers, in high-speed and low-speed maneuvers and in dry and wet roads, has the best performance compared to conventional sliding mode and linear controllers.


2021 ◽  
Vol 20 ◽  
pp. 98-107
Author(s):  
Alessandro Gerlinger Romero ◽  
Luiz Carlos Gadelha De Souza

The satellite attitude and orbit control system (AOCS) can be designed with success by linear control theory if the satellite has slow angular motions and small attitude maneuver. However, for large and fast maneuvers, the linearized models are not able to represent all the perturbations due to the effects of the nonlinear terms present in the dynamics and in the actuators (e.g., saturation). Therefore, in such cases, it is expected that nonlinear control techniques yield better performance than the linear control techniques. One candidate technique for the design of AOCS control law under a large maneuver is the State-Dependent Riccati Equation (SDRE). SDRE entails factorization (that is, parameterization) of the nonlinear dynamics into the state vector and the product of a matrix-valued function that depends on the state itself. In doing so, SDRE brings the nonlinear system to a (nonunique) linear structure having state-dependent coefficient (SDC) matrices and then it minimizes a nonlinear performance index having a quadratic-like structure. The nonuniqueness of the SDC matrices creates extra degrees of freedom, which can be used to enhance controller performance, however, it poses challenges since not all SDC matrices fulfill the SDRE requirements. Moreover, regarding the satellite's kinematics, there is a plethora of options, e.g., Euler angles, Gibbs vector, modified Rodrigues parameters (MRPs), quaternions, etc. Once again, some kinematics formulation of the AOCS do not fulfill the SDRE requirements. In this paper, we evaluate the factorization options (SDC matrices) for the AOCS exploring the requirements of the SDRE technique. Considering a Brazilian National Institute for Space Research (INPE) typical mission, in which the AOCS must stabilize a satellite in three-axis, the application of the SDRE technique equipped with the optimal SDC matrices can yield gains in the missions. The initial results show that MRPs for kinematics provides an optimal SDC matrix.


2013 ◽  
Vol 51 (3) ◽  
pp. 434-449 ◽  
Author(s):  
Junoh Jung ◽  
Sang-Young Park ◽  
Sung-Woo Kim ◽  
Youngho Eun ◽  
Young-Keun Chang

Sign in / Sign up

Export Citation Format

Share Document