Degradation assessment of ball bearings utilizing curvilinear component analysis

Author(s):  
Prashant Tiwari ◽  
SH Upadhyay

The performance degradation assessment of ball bearings is of great importance to increase the efficiency and the reliability of rotating mechanical systems. The large dimensionality of feature space introduces a lot of noise and buries the potential information about faults hidden in the feature data. This paper proposes a novel health assessment method facilitated with two compatible methods, namely curvilinear component analysis and self-organizing map network. The novelty lies in the implementation of a vector quantization approach for the sub-manifolds in the feature space and to extract the fault signatures through nonlinear mapping technique. Curvilinear component analysis is a nonlinear mapping tool that can effectively represent the average manifold of the highly folded information and further preserves the local topology of the data. To answer the complications and to accomplish reliability and accuracy in bearing performance degradation assessment, the work is carried out with following steps; first, ensemble empirical mode decomposition is used to decompose the vibration signals into useful intrinsic mode functions; second, two fault features i.e. singular values and energy entropies are extracted from the envelopes of the intrinsic mode function signals; third, the extracted feature vectors under healthy conditions, further reduced with curvilinear component analysis are used to train the self-organizing map model; finally, the reduced test feature vectors are supplied to the trained self-organizing map and the confidence value is obtained. The effectiveness of the proposed technique is validated on three run-to-failure test signals with the different type of defects. The results indicate that the proposed technique detects the weak degradation earlier than the widely used indicators such as root mean square, kurtosis, self-organizing map-based minimum quantization error, and minimum quantization error-based on the principal component analysis.

Author(s):  
Chao Zhang ◽  
Shaoping Wang

Solid lubricated bearings are commonly used in space mechanisms and other appliances, and their reliability analysis has drawn more and more attention. This paper focuses on the performance degradation analysis of solid lubricated bearings. Based on the vibration and friction torque signal of solid lubricated bearings, Laplace wavelet filter is adopted to process vibration signal and feature vector is constructed by calculating time-domain parameters of filtered vibration signal and original friction torque signal. Self-organizing map is then adopted to analyze the performance degradation based on extracted feature vectors. Experimental results show that this method can describe performance degradation process effectively.


2016 ◽  
Vol 713 ◽  
pp. 107-110 ◽  
Author(s):  
Jhonatan Camacho-Navarro ◽  
Magda Ruiz ◽  
Rodolfo Villamizar ◽  
Luis Mujica ◽  
Oscar Pérez

Pipe leaks detection has a great economic, environmental and safety impact. Although several methods have been developed to solve the leak detection problem, some drawbacks such as continuous monitoring and robustness should be addressed yet. Thus, this paper presents the main results of using a leaks detection and classification methodology, which takes advantage of piezodiagnostics principle. It consists of: i) transmitting/sensing guided waves along the pipe surface by means of piezoelectric device ii) representing statistically the cross-correlated piezoelectric measurements by using Principal Component Analysis iii) identifying leaks by using error indexes computed from a statistical baseline model and iv) verifying the performance of the methodology by using a Self-Organizing Map as visualization tool and considering different leak scenario. In this sense, the methodology was experimentally evaluated in a carbon-steel pipe loop under different leaks scenarios, with several sizes and locations. In addition, the sensitivity of the methodology to temperature, humidity and pressure variations was experimentally validated. Therefore, the effectiveness of the methodology to detect and classify pipe leaks, under varying environmental and operational conditions, was demonstrated. As a result, the combination of piezodiagnostics approach, cross-correlation analysis, principal component analysis, and Self-Organizing Maps, become as promising solution in the field of structural health monitoring and specifically to achieve robust solution for pipe leak detection.


Author(s):  
Junzo Watada ◽  
◽  
Le Yu ◽  
Munenori Shibata ◽  
Marzuki Khalid ◽  
...  

This study is concerned with the development of marketing strategies for mineral water based on consumers’ taste preferences, by analyzing the taste components of mineral water. In this study, we used a twodimensional analysis to classify taste data. We conducted a correlation analysis to identify the characteristics of taste data. We applied a combination of principal component analysis and self-organizing map to classify mineral water tastes. Based on this evaluation, we identified some marketing strategies in the conclusion. According to this study, the taste of mineral water is not determined by the origin and is not influenced by the hardness of the water.


Sign in / Sign up

Export Citation Format

Share Document