Application of Gauss principle of least constraint in multibody systems with redundant constraints

Author(s):  
Liusong Yang ◽  
Shifeng Xue ◽  
Wenli Yao

Redundancy in the constrained mechanical systems often occurs in complex multibody mechanic systems in the existence of excessive constraints and singular positions due to system motion. In this work, Gauss principle of least constraint (GPLC) is applied to solve the dynamic motion of system with redundant constraints without changing the physics of system. Furthermore, the particle swarm optimization method is used to handle the minimization optimization problem. Eventually, the effectiveness of GPLC is validated through the dynamic modelling and simulation of two numerical examples (a planar four-bar mechanism and a spatial parallelogram mechanism). The simulation results are analyzed and compared with those obtained from Udwaia-Phohomsiri formulation and augmented Lagrangian formulation, in terms of constraint violation, computational efficiency and variation of the mechanical energy. From the viewpoint of computational efficiency and accuracy, GPLC can be regarded as a practical real-time simulation method for multibody systems with redundant constraints.

2013 ◽  
Vol 700 ◽  
pp. 164-169
Author(s):  
Kai Song ◽  
Chao Wang ◽  
Tao Chen ◽  
Ze Zhou

This paper aims at cover body dent resistance optimization problems, developed a whole process method using the finite element simulation method and the corresponding engineering experience to solve the dent resistance problem. Use of Tcl/Tk language to develop the script for fast simulation model consider material nonlinearity and contact nonlinearity, Use Abaqus software to calculate the results, and then customized to optimize use of simplified script parameters on changes in the working conditions of the structure will be optimized. The results show that this set of process optimization method to solve the variable conditions dent resistance is quickly, efficiently and accurately.


2020 ◽  
Vol 1 (2) ◽  
pp. 61-67
Author(s):  
Mohammad Rizqi Saputra ◽  
Nur Kholis ◽  
Mohammad Munib Rosadi

Abstract Wind is a renewable mechanical energy source that can be used as an energy source because the energy from the wind can be used to drive wind turbines. Savonius wind turbine type L is a tool to convert wind energy into electricity with a simple construction and can work with low wind speeds. The purpose of this study was to determine the effect of differences in diameter and number of blades on the power produced. The method used is a simulation method with an artificial wind source. With a wind speed of 8 m/s. The data analysis technique used is 2-way ANOVA using the SPSS application. Variations used are 20 cm and 40 cm in diameter and the number of blades 2 and 4 . The result is a wind turbine with a variation of 40 cm and 4 blades capable of producing the best output which produces 350.98 RPM voltage of 11.64 volts current of 0.144 amperes and power of 1,676 watts. As for BHP, torque, and turbine efficiency with a variation of 40 cm and 4 blades capable of producing the best output where the generated BHP is 3.352 watts, torque 0.091 N / m efficiency 2.17. For the results of calculations with SPSS wind turbines with a diameter variation of 40 cm and 4 blades, the biggest power is 1,744 watts and for BHP produces 3.3520 watts and the efficiency reaches 2.17%. Keyword : Diameter, number of blade, Performance Abstrak Angin adalah sumber energi mekanik yang bisa diperbaharui sehingga dapat dimanfaatkan sebagai sumber energi karena dapat digunakan untuk menggerakkan turbin angin. Turbin angin savonius tipe L merupakan alat untuk mengubah energi angin menjadi listrik dengan konstruksi yang sederhana dan dapat bekerja dengan kecepatan angin yang rendah. Tujuan penelitian ini untuk mengetahui pengaruh perbedaan diameter dan jumlah sudu terhadap unjuk kerja yang dihasilkan. Metode yang digunakan adalah metode simulasi dengan sumber angin buatan. Dengan kecepatan angin 8 m/s. Teknik analisis data yang digunakan adalah ANOVA 2 arah dengan menggunakan aplikasi SPSS. Variasi yang digunakan adalah diameter 20 cm dan 40 cm serta jumlah sudu 2 dan 4. Hasilnya turbin angin dengan variasi 40 cm dan 4 sudu mampu menghasilkan output terbaik yang dimana menghasilkan RPM 350,98 tegangan 11,64 volt arus 0,144 ampere dan daya 1,676 watt. Sedangkan untuk BHP, torsi, dan efisensi turbin dengan variasi 40 cm dan 4 sudu mampu menghasilkan output yang terbaik dimana BHP yang dihasilkan adalah 3,352 watt, torsi 0,091 N/m efisisensi 2,17. Untuk hasil perhitungan dengan SPSS turbin angin dengan variasi diameter 40 cm dan 4 sudu menghasilkan daya terbesar yakni 1,744 watt dan untuk BHP menghasilkan 3,3520 watt dan efisiensinya mencapai 2,17 % untuk torsi tertinggi dicapai turbin variasi 40 cm 2 sudu dengan torsi 0,116.   Kata kunci : diameter, jumlah sudu, unjuk kerja


2021 ◽  
Vol 237 ◽  
pp. 04008
Author(s):  
Shiyuan Huang ◽  
Pengfei Liu ◽  
Hongqin Zhang ◽  
Zhipeng Ding

The “Sponge City Construction Technical Guide” mentions the method for decomposing and implementing the annual total runoff control rate: volume method and model simulation method. Through research, it is found that the two are based on the control detailed planning level in decomposing the scale parameters of LID facilities. The indicators to each block are allocated through repeated tests through experience and trial calculations, resulting in a lack of scientific rationality in the process and results of the indicator decomposition, and because the Guide is still in the trial stage, there are few researches on the decomposition of runoff control indicators represented by SWMM. Therefore, with the help of MATLAB’s constraint optimization module and SWMM hydro-hydraulic model, this study proposes a complete set of decomposition ideas and methods for the decomposition and implementation of the annual runoff total control rate in the special planning of sponge city, and the index decomposition process through relevant cases Elaborate.


Author(s):  
E. Bayo ◽  
J. M. Jimenez

Abstract We investigate in this paper the different approaches that can be derived from the use of the Hamiltonian or canonical equations of motion for constrained mechanical systems with the intention of responding to the question of whether the use of these equations leads to more efficient and stable numerical algorithms than those coming from acceleration based formalisms. In this process, we propose a new penalty based canonical description of the equations of motion of constrained mechanical systems. This technique leads to a reduced set of first order ordinary differential equations in terms of the canonical variables with no Lagrange’s multipliers involved in the equations. This method shows a clear advantage over the previously proposed acceleration based formulation, in terms of numerical efficiency. In addition, we examine the use of the canonical equations based on independent coordinates, and conclude that in this second case the use of the acceleration based formulation is more advantageous than the canonical counterpart.


Author(s):  
J. García de Jalón ◽  
J. M. Jiménez ◽  
A. Avello ◽  
F. Martín ◽  
J. Cuadrado

2021 ◽  
Vol 130 (14) ◽  
pp. 145105
Author(s):  
Cailian Li ◽  
Sanxi Wu ◽  
Shuaiyu Bu ◽  
Yuanyuan Li ◽  
Guoqiang Liu

2014 ◽  
Vol 619 ◽  
pp. 8-12
Author(s):  
Ju Seok Kang

It is difficult to calculate dynamic equilibrium configuration in the mechanical systems, especially with the constraint conditions. In this paper, a method to calculate the dynamic equilibrium positions in the constrained mechanical systems is proposed. The accelerations of independent coordinates are derived in the algebraic form so that the numerical solution is easily obtained by the iteration method. The proposed method has been applied to calculate the dynamic equilibrium configuration for speed governor and the wheelset of railway vehicle.


Sign in / Sign up

Export Citation Format

Share Document