Analysis of delamination of composite laminates via extended finite element method based on the layerwise displacement theory and cohesive zone method

Author(s):  
Matheus VM Santos ◽  
Murilo Sartorato ◽  
Anish Roy ◽  
Volnei Tita ◽  
Marcelo L Ribeiro

Composite laminates are being more employed as fundamental structures due to its low weight and high stiffness. To predict the material response in presence of damage can be demanding due to composite’s complex nature. Hence, superior computational models should be further investigated to speculate a more accurate composite behavior. This paper proposes an extended finite element procedure, based on the layerwise displacement theory, to simulate delamination to composite laminate. It is assumed a cohesive behavior to the damaged domain, described by a traction separation law. An extra degree of freedom associated to the strong discontinuity (delamination) is added at each layer top and bottom surface for out-of-plane displacement. This extra degree of freedom is only active on the failed nodes. To validate the model, a pre-delaminated composite analysis is performed and compared to results already reported in the literature. In addition, all stress components can be precisely calculated due to layer wise displacement field assumption, without any concern about the membrane and shear locking, not to mention its greater computational efficiency when compared to equivalent three-dimensional elements. Therefore, in the present work, it is shown the limitations and potentialities when a cohezive formulation is combined to extended finite element method using a new kind of approach. Additionally, this formulation makes easier to model delaminations using finite element method keeping a good accuracy without the need of cumbersome finite element models.

2019 ◽  
Vol 11 (6) ◽  
pp. 168781401985979
Author(s):  
Han-Soo Kim ◽  
Geon-Hyeong Kim

In this article, the enriched degree of freedom locking that can occur in a crack analysis with the extended finite element method is described. The discontinuous displacement field formulated by the enriched degree of freedom in the extended finite element method does not activate due to the enriched degree of freedom locking. Using the phantom node method, the occurrence of locking when two adjacent elements are simultaneously cracked in a loading step was verified. Two adjacent cracks can be determined to have developed simultaneously when an analysis model reveals a relatively uniform stress distribution on two adjacent elements. Numerical examples of a simply tensioned bar and a reinforced concrete beam are presented to demonstrate the erroneous analysis result due to the enriched degree of freedom locking. As a simple method to circumvent the enriched degree of freedom locking, the tensile strength of the neighboring elements was slightly increased in the numerical examples, and the effectiveness of the method was demonstrated. The proposed method is simple and easy for practicing engineers, and it can be easily applied to the three-dimensional crack propagation analysis.


Author(s):  
Elena Benvenuti ◽  
Nicola Orlando

AbstractWe propose a formulation for tracking general crack paths in elastodamaging materials without mesh adaptivity and broadening of the damage band. The idea is to treat in a unified way both the damaging process and the development of displacement discontinuities by means of the regularized finite element method. With respect to previous authors’ contributions, a novel damage evolution law and an original crack tracking framework are proposed. We face the issue of mesh objectivity through several two-dimensional tests, obtaining smooth crack paths and reliable structural results.


Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 507
Author(s):  
K. Yakoubi ◽  
S. Montassir ◽  
Hassane Moustabchir ◽  
A. Elkhalfi ◽  
Catalin Iulian Pruncu ◽  
...  

The work investigates the importance of the K-T approach in the modelling of pressure cracked structures. T-stress is the constant in the second term of the Williams expression; it is often negligible, but recent literature has shown that there are cases where T-stress plays the role of opening the crack, also T-stress improves elastic modeling at the point of crack. In this research study, the most important effects of the T-stress are collected and analyzed. A numerical analysis was carried out by the extended finite element method (X-FEM) to analyze T-stress in an arc with external notch under internal pressure. The different stress method (SDM) is employed to calculate T-stress. Moreover, the influence of the geometry of the notch on the biaxiality is also examined. The biaxiality gave us a view on the initiation of the crack. The results are extended with a comparison to previous literature to validate the promising investigations.


Sign in / Sign up

Export Citation Format

Share Document