An accelerated multi-zone model for engine cycle simulation of homogeneous charge compression ignition combustion

2013 ◽  
Vol 14 (5) ◽  
pp. 416-433 ◽  
Author(s):  
Janardhan Kodavasal ◽  
Matthew J McNenly ◽  
Aristotelis Babajimopoulos ◽  
Salvador M Aceves ◽  
Dennis N Assanis ◽  
...  
2020 ◽  
pp. 146808742092948
Author(s):  
Juan Manuel Garcia-Guendulain ◽  
Alejandro Ramirez-Barron ◽  
José Manuel Riesco-Avila ◽  
Russell Whitesides ◽  
Salvador M Aceves

The very intensive calculations necessary to define a performance map requiring evaluation of over a hundred individual operating points can be efficiently conducted with accelerated multizone for engine cycle simulation, leading to a definition of regions of acceptable and optimum homogeneous charge compression ignition operation. Accelerated multizone for engine cycle simulation has the virtue of enabling accurate evaluation of many operating conditions based on thermal stratification data from a single fluid mechanics run at motored conditions. This is possible because thermal stratification is more sensitive to engine geometry than to operating conditions. In this article, accuracy of accelerated multizone for engine cycle simulation is demonstrated by comparison with experimental data for iso-octane homogeneous charge compression ignition operation over a broad range of lean equivalence ratios (0.14–0.28). The validated accelerated multizone for engine cycle simulation model is then applied to generating a performance map for an engine controlled by appropriately adjusting equivalence ratio and internal exhaust gas recirculation. Regions of acceptable and optimum combustion are identified. It is finally demonstrated that while indicated mean effective pressure remains low for optimum homogeneous charge compression ignition operation (1–4 bar), this is sufficient for a large fraction of typical driving in light-duty vehicles. Much driving including idle can therefore be done in homogeneous charge compression ignition mode at high efficiency and low (essentially zero) NO x and particulate matter emissions.


2019 ◽  
Vol 21 (9) ◽  
pp. 1631-1646
Author(s):  
Joshua Lacey ◽  
Karthik Kameshwaran ◽  
Zoran Filipi ◽  
Peter Fuentes-Afflick ◽  
William Cannella

Homogeneous charge compression ignition combustion is highly dependent on in-cylinder thermal conditions that are favorable to auto-ignition, and the presence of deposits can dramatically impact the in-cylinder environment. Because fuels available at the pump can differ considerably in composition, and fuel composition and the included additive package directly affect how deposits accumulate in a homogeneous charge compression ignition engine, strategies intended to bring homogeneous charge compression ignition to market must account for this fuel and additive variability. In order to investigate this impact, two oxygenated refinery stream test fuels with two different additives were run in a single cylinder homogeneous charge compression ignition engine. The two fuels had varying chemical composition; one represents a “dirty” fuel with high aromatic content that was intended to simulate a worst-case scenario for deposit growth, while the other represents a California Reformulated Gasoline Blendstock for Oxygenate Blending fuel, which is the primary constituent of pump gasoline at fueling stations across the state of California. The additive packages are typical of technologies that are commercially available to treat engine deposits. Both fuels were run in an experimental, single-cylinder homogeneous charge compression ignition engine in a passive conditioning study, during which the engine was run at steady state over a period of time in order to track changes in the homogeneous charge compression ignition combustion event as deposits accumulated in-cylinder. Both the composition and the additive influenced the structure of the combustion chamber deposit layer, but more importantly, both the rate at which the layer developed and the equilibrium thickness it achieved. The overall thickness of the combustion chamber deposit layer was found to have a significant impact on homogeneous charge compression ignition combustion phasing.


2019 ◽  
Vol 20 (10) ◽  
pp. 1101-1113 ◽  
Author(s):  
David Gordon ◽  
Christian Wouters ◽  
Maximilian Wick ◽  
Bastian Lehrheuer ◽  
Jakob Andert ◽  
...  

Homogeneous charge compression ignition is a part-load combustion method, which can significantly reduce oxides of nitrogen (NO x) emissions compared to current lean-burn spark ignition engines. The challenge with homogeneous charge compression ignition combustion is the high cyclic variation due to the lack of direct ignition control. A fully variable electromagnetic valve train provides the internal exhaust gas recirculation through negative valve overlap which is required to obtain the necessary thermal energy to enable homogeneous charge compression ignition. This also increases the cyclic coupling as residual gas and unburnt fuel is transferred between cycles through exhaust gas recirculation. To improve combustion stability, an experimentally validated feed-forward water injection controller is presented. Utilizing the low latency and rapid calculation rate of a field programmable gate array, a real-time calculation of residual fuel mass is implemented on a prototyping engine controller. Using this field programmable gate array–based calculation, it is possible to calculate the amount of fuel and the required control interaction during an engine cycle. This controller prevents early rapid combustion following a late combustion cycle using direct water injection to cool the cylinder charge and counter the additional thermal energy from any residual fuel that is transferred between cycles. By cooling the trapped cylinder mass, the upcoming combustion phasing can be delayed to the desired setpoint. The controller was tested at several operating points and showed an improvement in the combustion stability as shown by a reduction in the standard deviation of combustion phasing and indicated mean effective pressure.


Sign in / Sign up

Export Citation Format

Share Document