Knowledge-Based Engineering–based method for containership lashing bridge optimization design and structural improvement with functionally graded thickness plates

Author(s):  
Chuntong Li ◽  
Deyu Wang

This article presents a Knowledge-Based Engineering application method for the optimization design of containership lashing bridge. To reduce the structural vibration response of lashing bridges, a structural improvement method was proposed based on the results of optimization. The adoption of design specifications, expertise and other knowledge accumulated in design have been ignored in the development of structure design and optimization. To face the increasingly fierce competition in the marine market, the optimal solution is establishing a knowledge base containing expertise, design specification and successful design cases. In addition, the advanced techniques for design and optimization shall be incorporated with Knowledge-Based Engineering to automate new designs and optimizations. Furthermore, finite element method is employed to carry out the strength analysis. Lightweight design and vibration damping design of the lashing bridge are deemed as two critical issues having nagged designers. The Knowledge-Based Engineering–based design and optimization approach not only ensure the performance of the lashing bridge structure to be reasonable but also minimize the weight target and evidently improves the design quality and efficiency. The functionally graded thickness structure is applied to the improved scheme, which not only makes the design of the lashing bridge structure more reasonable but also reduces the vibration response of the structure.

2011 ◽  
Vol 105-107 ◽  
pp. 168-171
Author(s):  
Dong Fang Hu ◽  
Wen Hui Liu

This paper shows the static strength analysis of the tractor front axle housing by using of the finite element analysis software ANSYS, visually shows equivalent stress and strain distribution and vertical displacement distribution of the front axle housing. At the same time it also shows the analysis results of the model processing, the results of accuracy and reliability, and the weak links of the structure. By analyzing the weakest link and the difference in strength between each node for the overall structure in the condition, it can provide a direction and theoretical basis for the design and optimization of geometric entities. And the results of the analysis may be as the basis for structural improvement. In this way, it can be verified that using computer virtual software for product development is positive.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Ruixian Qin ◽  
Junxian Zhou ◽  
Bingzhi Chen

Higher energy absorption efficiency and better crashworthiness performance are always the key objectives for different energy absorbing structures applied in numerous industries including aerospace, rail equipment transportation, and automotive. In this study, a functionally graded thickness (FGT) design method is introduced in the design of a hexagon honeycomb structure to improve energy absorbing efficiency on the basis of a traditional honeycomb with uniform thickness (UT). The validation of a numerical analysis model for a UT honeycomb under axial loading is implemented by a nonlinear finite element code LS-DYNA (V971). Furthermore, the multiobjective crashworthiness optimization of an FGT honeycomb subjected to axial quasi-static compression is conducted to maximize specific energy absorption (SEA) and minimize peak crashing force (PCF). In addition, three surrogate models, including radial basis function (RBF), response surface method (RSM), and kriging (KRG), are compared in the accuracy of predicting SEA and PCF and capacity for optimization design of FGT honeycomb structure; the Nondominated Sorting Genetic Algorithm (NSGA-II) is applied to obtain the Pareto optimal solutions for the maximum thickness, minimum thickness, and thickness variation gradient exponent of a honeycomb wall. The optimal points obtained by different surrogate models subjected to an SEA value of 18.5 kJ/kg, 20 kJ/kg, 22 kJ/kg, and 24 kJ/kg are validated, and corresponding optimal parameters are compared; RBF and RSM are more suitable in crashworthiness optimization design of the FGT honeycomb structure. It is indicated that the FGT honeycomb with optimal geometrical parameters presents remarkable enhancement and energy absorbing potential compared to the traditional honeycomb structure.


2015 ◽  
Vol 78 ◽  
pp. 128-137 ◽  
Author(s):  
Guangyong Sun ◽  
Xuanyi Tian ◽  
Jianguang Fang ◽  
Fengxiang Xu ◽  
Guangyao Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document