Reliability analysis of mooring lines for floating structures using ANN-BN inference

Author(s):  
Yuliang Zhao ◽  
Sheng Dong ◽  
Fengyuan Jiang

The harsh marine environment is a significant threat to the safety of floating structure systems. To address this, mooring systems have seen widespread application as an important component in the stabilization of floating structures. This article proposes a methodology to assess the reliability of mooring lines under given extreme environmental conditions based on artificial neural network–Bayesian network inference. Different types of artificial neural networks, including radial basis function neural networks and back propagation neural networks, are adopted to predict the extreme response of mooring lines according to a series of measured environmental data. A failure database under extreme sea conditions is then established in accordance with the failure criterion of mooring systems. There is a failure of mooring lines when the maximum tension exceeds the allowable breaking strength. Finally, the reliability analysis of moored floating structures under different load directions is conducted using Bayesian networks. To demonstrate the proposed methodology, the failure probability of a sample semi-submersible platform at a water depth of 1500 m is estimated. This approach utilizes artificial neural networks’ capacity for calculation efficiency and validates artificial neural networks for the response prediction of floating structures. Furthermore, it can also be employed to estimate the failure probability of other complex floating structures.

Author(s):  
Wellison J. S. Gomes

Abstract Surrogate models are efficient tools which have been successfully applied in structural reliability analysis, as an attempt to keep the computational costs acceptable. Among the surrogate models available in the literature, Artificial Neural Networks (ANNs) have been attracting research interest for many years. However, the ANNs used in structural reliability analysis are usually the shallow ones, based on an architecture consisting of neurons organized in three layers, the so-called input, hidden and output layers. On the other hand, with the advent of deep learning, ANNs with one input, one output, and several hidden layers, known as deep neural networks, have been increasingly applied in engineering and other areas. Considering that many recent publications have shown advantages of deep over shallow ANNs, the present paper aims at comparing these types of neural networks in the context of structural reliability. By applying shallow and deep ANNs in the solution of four benchmark structural reliability problems from the literature, employing Monte Carlo simulation and adaptive experimental designs, it is shown that, although good results are obtained for both types of ANNs, deep ANNs usually outperform the shallow ones.


2010 ◽  
Vol 20-23 ◽  
pp. 1211-1216 ◽  
Author(s):  
Wen Yu Zhang

Because but the artificial neural networks has the strong non-linear problem handling ability also the fault tolerance strong obtains the widespread application in the materials science.This article to its material design, the material preparation craft optimizes, the plastic processing, the heat treatment, the compound materials, corrode, domain and so on casting applications have carried on the discussion.


2015 ◽  
Vol 52 ◽  
pp. 78-89 ◽  
Author(s):  
A.A. Chojaczyk ◽  
A.P. Teixeira ◽  
L.C. Neves ◽  
J.B. Cardoso ◽  
C. Guedes Soares

2021 ◽  
Author(s):  
Chardin Hoyos Cordova ◽  
Manuel Niño Lopez Portocarrero ◽  
Rodrigo Salas ◽  
Romina Torres ◽  
Paulo Canas Rodrigues ◽  
...  

Abstract The prediction of air pollution is of great importance in highly populated areas because it has a direct impact on both the management of the city's economic activity and the health of its inhabitants. In this work, the spatio-temporal behavior of air quality in Metropolitan Lima was evaluated and predicted using the recurrent artificial neural network known as Long-Short Term Memory networks (LSTM). The LSTM was implemented for the hourly prediction of PM10 based on the past values of this pollutant and three meteorological variables obtained from five monitoring stations. The model was evaluated under two validation schemes: the hold-out (HO) and the blocked-nested cross-validation (BNCV). The simulation results show that periods of low PM10 concentration are predicted with high precision. Whereas, for periods of high contamination, the LSTM network with BNCV has better predictability performance. In conclusion, recurrent artificial neural networks with BNCV adapt more precisely to critical pollution episodes and have better performance to forecast this type of environmental data, and can also be extrapolated to other pollutants.


Sign in / Sign up

Export Citation Format

Share Document