Detection of Low-velocity Impact Damage in Composite Plates using Lamb Waves

2004 ◽  
Vol 3 (1) ◽  
pp. 33-41 ◽  
Author(s):  
K. Diamanti ◽  
J. M. Hodgkinson ◽  
C. Soutis
2009 ◽  
Vol 79-82 ◽  
pp. 127-130 ◽  
Author(s):  
Shi Xun Wang ◽  
Lin Zhi Wu ◽  
Li Ma

Since composite sandwich structures are susceptible to low-velocity impact damage, a thorough characterization of the loading and damage process during impact is important. In the present paper, the low-velocity impact response of carbon fiber composites lattice structures are investigated by experimental and numerical methods. Impact tests on composite plates are performed using an instrumented drop-weight machine (Instron 9250HV) and a new damage mode is observed. A three-dimensional finite element model is built by ABAQUS/Explicit and user subroutine (VUMAT) to predict the peak loading and simulate the complicated damage problem. It can be found that numerical predictions coincide well with experimental results.


Author(s):  
YAPICI A. ◽  
METIN M. ◽  
UYANER M. ◽  
KARA M. ◽  
ESKIZEYBEK V.

2006 ◽  
Vol 321-323 ◽  
pp. 759-764 ◽  
Author(s):  
Krishnan Balasubramaniam ◽  
B.V. Soma Sekhar ◽  
J. Vishnu Vardan ◽  
C.V. Krishnamurthy

Structural Health Monitoring (SHM) of aircrafts is of great relevance in the present age aircraft industry. The present study demonstrates three techniques that have the potential for the SHM of multi-layered composite structures. The first technique is based on multi-transmitter-multireceiver (MTMR) technique with tomographic methods used for data reconstruction. In the MTMR, the possibility of SHM using algebraic reconstruction techniques (ART) for tomographic imaging with Lamb wave data measured in realistic materials is examined. Defects (through holes and low velocity impact delaminations) were synthetic and have been chosen to simulate impact damage in composite plates. The second technique is a single-transmitter-multi-receiver (STMR) technique that is more compact and uses reconstruction techniques that are analogous to synthetic aperture techniques. The reconstruction algorithm uses summation of the phase shifted signals to image the location of defects, portions of the plate edges, and any reflectors from inherent structural features of the component. The third technique involves a linear array of sensors across a stiffener for the detection of disbanded regions.


Sign in / Sign up

Export Citation Format

Share Document