Structural Health Monitoring of Fiber-reinforced Composite Plates for Low-velocity Impact Damage using Ultrasonic Lamb Wave Tomography

2006 ◽  
Vol 5 (3) ◽  
pp. 243-253 ◽  
Author(s):  
B. V. Soma Sekhar ◽  
Krishnan Balasubramaniam ◽  
C. V. Krishnamurthy
Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2573
Author(s):  
Hanhua Li ◽  
Qiuhua Zhang ◽  
Jiale Jia ◽  
Chunming Ji ◽  
Bing Wang ◽  
...  

In order to better understand the damage tolerance of reinforced composite plates, the impact damage of the reinforced composite plates was investigated under low-velocity impact test. The experimental results show that the impact of different positions and energies causes different degrees of damage to the specimens, including but not limited to ply fracture, internal delamination of the skin, and debonding of the stiffeners and skin. After impacting, the specimens were tested in an axial compression. The results show that the ultimate bearing capacity of the specimen is also affected by different forms of impact. The impact point has the greatest influence on the specimen while it locates at the intersection of longitudinal and transverse bars. Compared with the intact specimen, the ultimate load carrying capacity was reduced by 16.83% and 44.02%, while the specimen impacted by 15 J and 30 J, respectively. The compression failure mode of the damaged specimen is mainly the breakage of the stiffeners and the delamination of the skin.


2016 ◽  
Vol 827 ◽  
pp. 145-148 ◽  
Author(s):  
Sneha Samal ◽  
David Reichmann ◽  
Iva Petrikova ◽  
Bohdana Marvalova

Low velocity impact strength of the fabric reinforced geocomposite has investigated in this article. Various fabrics such as carbon and E-glass were considered for reinforcement in geopolymer matrix. The primary two parameters such as low velocity, impact damage modes are explained on the E-glass and carbon based fabric geocomposite. The onset mode of damage to failure mode is examined through C-scan analysis. The quality of the composite is observed using c-scan with acoustic vibration mode of sensor before and after impact test. Then the effect of fabric and matrix on the impact behaviour is discussed. Residual strength of the composite is measured to determine post impact behaviour. It has been observed that resistance properties of E-glass reinforced composite is better than carbon fabric reinforced composite.


2009 ◽  
Vol 79-82 ◽  
pp. 127-130 ◽  
Author(s):  
Shi Xun Wang ◽  
Lin Zhi Wu ◽  
Li Ma

Since composite sandwich structures are susceptible to low-velocity impact damage, a thorough characterization of the loading and damage process during impact is important. In the present paper, the low-velocity impact response of carbon fiber composites lattice structures are investigated by experimental and numerical methods. Impact tests on composite plates are performed using an instrumented drop-weight machine (Instron 9250HV) and a new damage mode is observed. A three-dimensional finite element model is built by ABAQUS/Explicit and user subroutine (VUMAT) to predict the peak loading and simulate the complicated damage problem. It can be found that numerical predictions coincide well with experimental results.


Sign in / Sign up

Export Citation Format

Share Document