Synergistic effect of nano-ZrO2/graphene oxide hybrid system on the high-velocity impact behavior and interlaminar shear strength of basalt fiber/epoxy composite

2019 ◽  
pp. 152808371987992 ◽  
Author(s):  
Davood Toorchi ◽  
Hamed Khosravi ◽  
Esmaeil Tohidlou

The aim of this work was to study the influence of nano-zirconium oxide, graphene oxide, and nano-zirconium oxide + graphene oxide hybrid system on the high-velocity impact behavior and interlaminar shear strength of basalt fiber/epoxy composite. Initially, the nano-zirconium oxide and graphene oxide were functionalized by using a silane-coupling agent namely 3-aminopropyltrimethoxysilane. In order to confirm the surface functionalization of nano-zirconium oxide and graphene oxide, Fourier transform infrared spectroscopy and energy-dispersive X-ray spectroscopy were carried out on both untreated and silanized fillers. Then, 15 types of specimens containing various amounts of nano-zirconium oxide (1, 2, and 3 wt.%), graphene oxide (0.1, 0.3, and 0.5 wt.%), or nano-zirconium oxide + graphene oxide hybrid in the matrix were prepared. The comparative results of the experiments showed that the specimen with 2 wt.% nano-zirconium oxide + 0.1 wt.% graphene oxide had the highest values of energy absorption, impact limit velocity, and interlaminar shear strength. The energy absorption and limit velocity of this specimen enhanced by 67 and 30%, respectively, as compared to the neat basalt fiber/epoxy composite, while its interlaminar shear strength increased by 77%. The fracture surfaces of the specimens demonstrated that the introduction of nanofillers in the matrix improved the adhesion between the basalt fibers and polymeric matrix. The findings of this work clearly showed that the simultaneous addition of graphene oxide and nano-zirconium oxide is a promising method for improving the high-velocity impact properties and interlaminar shear strength of fibrous composites.

2012 ◽  
Vol 25 (6) ◽  
pp. 191-197
Author(s):  
Young-Ah Kim ◽  
Kyeongsik Woo ◽  
Won-Young Yoo ◽  
In-Gul Kim ◽  
Jong-Heon Kim

2021 ◽  
Author(s):  
D. MUNIRAJ ◽  
S. MUGHILARASAN ◽  
V. M. SREEHARI

Composite plays a significant role in the field of aerospace due to its excellent mechanical properties, nevertheless, they are highly susceptible to out-of-plane impact load. Fibre-reinforced composite fails effortlessly under impact load and absorb energy through damage mechanics rather than deformation. The present study investigates the damage behaviour of the CNT reinforced carbon fibre-epoxy composite under high velocity impact using single stage gas gun. Composite plates were fabricated with 0 to 0.6 weight percentage content of CNT as reinforcement using vacuum assisted resin transfer moulding. A series of impact test with various impact energy was carried out on carbon/epoxy composite plate to study the impact performance. From the experimentation it was observed that the 0.3 weight percentage CNT addition provides the optimum impact performance. Damage characterization was performed for various impact velocity based on the micro and macro scale damage area. Knowledge of the damage behaviour of CNT reinforced carbon fibreepoxy composite plate under high velocity impact loads is essential for both the product development and material selection in the aerospace application.


Sign in / Sign up

Export Citation Format

Share Document