scholarly journals High BIRC7 Expression Might Be an Independent Prognostic Indicator of Poor Recurrence-Free Survival in Patients With Prostate Cancer

2018 ◽  
Vol 17 ◽  
pp. 153303381880969 ◽  
Author(s):  
Yi Yang ◽  
Peng Sun ◽  
Wei Xu ◽  
Wei Xia
Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 917
Author(s):  
Jun A ◽  
Baotong Zhang ◽  
Zhiqian Zhang ◽  
Hailiang Hu ◽  
Jin-Tang Dong

Molecular signatures predictive of recurrence-free survival (RFS) and castration resistance are critical for treatment decision-making in prostate cancer (PCa), but the robustness of current signatures is limited. Here, we applied the Robust Rank Aggregation (RRA) method to PCa transcriptome profiles and identified 287 genes differentially expressed between localized castration-resistant PCa (CRPC) and hormone-sensitive PCa (HSPC). Least absolute shrinkage and selection operator (LASSO) and stepwise Cox regression analyses of the 287 genes developed a 6-gene signature predictive of RFS in PCa. This signature included NPEPL1, VWF, LMO7, ALDH2, NUAK1, and TPT1, and was named CRPC-derived prognosis signature (CRPCPS). Interestingly, three of these 6 genes constituted another signature capable of distinguishing CRPC from HSPC. The CRPCPS predicted RFS in 5/9 cohorts in the multivariate analysis and remained valid in patients stratified by tumor stage, Gleason score, and lymph node status. The signature also predicted overall survival and metastasis-free survival. The signature’s robustness was demonstrated by the C-index (0.55–0.74) and the calibration plot in all nine cohorts and the 3-, 5-, and 8-year area under the receiver operating characteristic curve (0.67–0.77) in three cohorts. The nomogram analyses demonstrated CRPCPS’ clinical applicability. The CRPCPS thus appears useful for RFS prediction in PCa.


2021 ◽  
Vol 38 (5) ◽  
Author(s):  
Laurie G. Kostecka ◽  
Athen Olseen ◽  
KiChang Kang ◽  
Gonzalo Torga ◽  
Kenneth J. Pienta ◽  
...  

AbstractKinesins play important roles in the progression and development of cancer. Kinesin family member C1 (KIFC1), a minus end-directed motor protein, is a novel Kinesin involved in the clustering of excess centrosomes found in cancer cells. Recently KIFC1 has shown to play a role in the progression of many different cancers, however, the involvement of KIFC1 in the progression of prostate cancer (PCa) is still not well understood. This study investigated the expression and clinical significance of KIFC1 in PCa by utilizing multiple publicly available datasets to analyze KIFC1 expression in patient samples. High KIFC1 expression was found to be associated with high Gleason score, high tumor stage, metastatic lesions, high ploidy levels, and lower recurrence-free survival. These results reveal that high KIFC1 levels are associated with a poor prognosis for PCa patients and could act as a prognostic indicator for PCa patients as well.


2018 ◽  
Vol 25 (1) ◽  
pp. 107327481877800 ◽  
Author(s):  
Xi Liu ◽  
Lei Chen ◽  
Tao Zhang

Golgi membrane protein 1 (GOLM1) is a transmembrane glycoprotein of the Golgi cisternae, which is implicated in carcinogenesis of multiple types of cancer. In this study, using data from the Gene Expression Omnibus and The Cancer Genome Atlas, we compared the expression of GOLM1 in lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) and studied its prognostic value in terms of overall survival (OS) and recurrence-free survival (RFS) in these 2 subtypes of non-small cell lung cancer (NSCLC). Results showed that GOLM1 was significantly upregulated in both LUAD and LUSC tissues compared to the normal controls. However, GOLM1 expression was higher in LUAD tissues than in LUSC tissues. More importantly, using over 10 years’ survival data from 502 patients with LUAD and 494 patients with LUSC, we found that high GOLM1 expression was associated with unfavorable OS and RFS in patients with LUAD, but not in patients with LUSC. The following univariate and multivariate analyses confirmed that increased GOLM1 expression was an independent prognostic indicator of poor OS (hazard ratio [HR]: 1.30, 95% confidence interval [CI]: 1.11-1.54, P = .002) and RFS (HR: 1.37, 95% CI: 1.14-1.64, P = .001) in patients with LUAD. Of 511 cases with LUAD, 248 (48.5%) had heterozygous loss (−1), while 28 (5.5%) of 511 cases with LUAD had low-level copy gain (+1). In addition, we also found that the methylation status of 1 CpG site (chr9: 88,694,942-88,694,944) showed a weak negative correlation with GOLM1 expression (Pearson r = −0.25). Based on these findings, we infer that GOLM1 might serve as a valuable prognostic biomarker in LUAD, but not in LUSC. In addition, DNA copy number alterations and methylation might be 2 important mechanisms of dysregulated GOLM1 in LUAD.


Cancer ◽  
2010 ◽  
Vol 117 (6) ◽  
pp. 1172-1182 ◽  
Author(s):  
Mariam Anees ◽  
Peter Horak ◽  
Ahmed El-Gazzar ◽  
Martin Susani ◽  
Georg Heinze ◽  
...  

2008 ◽  
Vol 14 (3) ◽  
pp. 758-763 ◽  
Author(s):  
Joseph R. Sterbis ◽  
Chunling Gao ◽  
Bungo Furusato ◽  
Yongmei Chen ◽  
Syed Shaheduzzaman ◽  
...  

2019 ◽  
Vol 37 (7_suppl) ◽  
pp. 99-99
Author(s):  
Reith Sarkar ◽  
J Kellogg Parsons ◽  
John Paul Einck ◽  
Arno James Mundt ◽  
A. Karim Kader ◽  
...  

99 Background: Currently there is little data to guide the use of testosterone replacement therapy in prostate cancer patients who have received radiation therapy (RT). We sought to evaluate the impact of post-RT testosterone replacement on prostate cancer outcomes in a large national cohort. Methods: We conducted a population-based cohort study using the Veterans Affairs Informatics and Computing Infrastructure. We identified node-negative and non-metastatic prostate cancer patients diagnosed between 2001-2015 treated with RT. We excluded patients for missing covariate and follow-up data. Receipt of testosterone was coded as a time-dependent covariate. Other covariates included: age, Charlson Comorbidity index, diagnosis year, body mass index, race, PSA, clinical T/N/M stage, Gleason score, and receipt of hormone therapy. We evaluated prostate cancer-specific survival, overall survival, and biochemical recurrence free survival using multivariable Cox regression. Results: Our cohort included 41,544 patients, of whom 544 (1.3%) received testosterone replacement after RT. There were no differences in Charlson comorbidity, clinical T stage, median pre-treatment PSA or Gleason score between treatment groups. Testosterone patients were more likely to be of younger age, non-black, have a lower median post-treatment PSA nadir (0.1 vs. 0.2; p < 0.001), have higher BMI, and have used hormone therapy (46.7% vs 40.3%; p = 0.003). Median duration of ADT usage was equivalent between treatment groups (testosterone: 185 days vs. non-testosterone: 186 days, p = 0.77). The median time from RT to TRT was 3.52 years. After controlling for differences in covariates between treatment groups, we found no difference in prostate cancer specific mortality (HR 1.02; 95% CI 0.62-1.67; p = 0.95), overall survival (HR 1.02; 95% CI 0.84-1.24; p = 0.86), non-cancer mortality (HR 1.02; 95% CI 0.82-1.27; p = 0.86) biochemical recurrence free survival (HR 1.07; 95% CI 0.90-1.28; p = 0.45). Conclusions: Our results suggest that testosterone replacement is safe in prostate cancer patients who have received RT. Prospective data are required to confirm the safety of post-RT testosterone replacement.


Sign in / Sign up

Export Citation Format

Share Document