New Functions for an Old Enzyme: Nonhemostatic Roles for Tissue-Type Plasminogen Activator in the Central Nervous System

2004 ◽  
Vol 229 (11) ◽  
pp. 1097-1104 ◽  
Author(s):  
Manuel Yepes ◽  
Daniel A. Lawrence
2004 ◽  
Vol 91 (03) ◽  
pp. 457-464 ◽  
Author(s):  
Manuel Yepes ◽  
Daniel Lawrence

SummaryNeuroserpin is a member of the serine proteinase inhibitor (serpin) gene family that reacts preferentially with tissue-type plasminogen activator (tPA) and is primarily localized to neurons in regions of the brain where tPA is also found. Outside of the central nervous system (CNS) tPA is predominantly found in the blood where its primary function is as a thrombolytic enzyme. However, tPA is also expressed within the CNS where it has a very different function, promoting events associated not only with synaptic plasticity but also with cell death in a number of settings, such as cerebral ischemia and seizures. Neuroserpin is released from neurons in response to neuronal depolarization and plays an important role in the development of synaptic plasticity. Following the onset of cerebral ischemia there is an increase in both tPA activity and neuroserpin expression in the area surrounding the necrotic core (ischemic penumbra), and treatment with neuroserpin following ischemic stroke or overexpression of the neuroserpin gene results in a significant decrease in the volume of the ischemic area as well as in the number of apoptotic cells. TPA activity and neuroserpin expression are also increased in specific areas of the brain by seizures, and treatment with neuroserpin slows the progression of seizure activity throughout the CNS and results in significant neuronal survival in the hippocampus. Mutations in human neuroserpin result in a form of autosomal dominant inherited dementia which is characterized by the presence of intraneuronal inclusion bodies and is known as Familial Encephalopathy with Neuroserpin Inclusion Bodies.


2008 ◽  
Vol 100 (12) ◽  
pp. 1014-1020 ◽  
Author(s):  
Satoru Koyanagi ◽  
Yukako Kuramoto ◽  
Masahiko Kimura ◽  
Masatoshi Oda ◽  
Tomohiro Kozako ◽  
...  

SummaryPlasminogen activator inhibitor-1 (PAI-1), a member of the ser-pin gene family, is the primary inhibitor of urokinase-type and tissue-type PA s.PA I-1 plays an important role in the process of peripheral tissue remodeling and fibrinolysis through the regulation of PA activity. This serpin is also produced in brain tissues and may regulate the neural protease sequence in the central nervous system (CNS), as it does in peripheral tissues. In fact, PA I-1 mRNA is up-regulated in mouse brain after stroke.The serpin activity of PA I-1 helps to prevent tissue-type PA -induced neuron death.However, we have previously found that PAI-1 has a novel biological function in the CNS: the contribution to survival of neurites on neurons. In neuronally differentiated rat pheochromocytoma (PC-12) cells, a deficiency of PA I-1 in vitro caused a significant reduction in Bcl-2 and Bcl-XL mRNAs and an increase in Bcl-XS and Bax mRNAs.The change in the balance between mRNA expressions of the anti- and pro-apoptotic Bcl-2 family proteins promoted the apoptotic sequence: cas-pase-3 activation, cytochrome c release from mitochondria and DNA fragmentation. Our results indicate that PA I-1 has an antiapoptotic role in neurons.PAI-1 prevented the disintegration of the formed neuronal networks by maintaining or promoting neuroprotective signaling through the MAPK/ ERK pathway, suggesting that the neuroprotective effect of PAI-1 is independent of its action as a protease inhibitor. This review discusses the neuroprotective effects of PA I-1 in vitro, together with the relevant data from other laboratories. Special emphasis is placed on its action on PC-12 cells.


Sign in / Sign up

Export Citation Format

Share Document