Work Zone Safety: Perceptual Countermeasures to Speeding using Synchronized Warning Lights

Author(s):  
Sameer A Khan
Author(s):  
Ana Maria Elias ◽  
Zohar J. Herbsman

Construction sites or work zones create serious disruptions in the normal flow of traffic, resulting in major inconveniences for the traveling public. Furthermore, these work zones create safety hazards that require special consideration. Current legislation and programs, at both state and national levels, emphasize the need for a better understanding of work zone problems to address work zone safety. This reality—coupled with the temporary closure of more miles of highway every year for rehabilitation and maintenance—makes the analysis of safety at construction sites a serious matter. A summary of a comprehensive study associated with the development of a new practical approach to address highway safety in construction zones is presented. Because empirical models require sample sizes that are not attainable due to the intrinsic scarcity of construction zone accident data, the problem was studied from the point of view of risk analysis. Monte Carlo simulations were used to develop risk factors. These factors are meant to be included in the calculations of additional user costs for work zones, or simply applied as risk measurements, to optimize the length and duration of closures for highway reconstruction and rehabilitation projects. In this way, it will be possible to assess the danger of work zones to the traveling public and minimize adverse effect of work zones on highway safety.


2003 ◽  
Author(s):  
Christopher Huebschman ◽  
Camilo Garcia ◽  
Darcy Bullock

2018 ◽  
Vol 3 (1) ◽  
pp. 62-71 ◽  
Author(s):  
Umar Ibrahim Khalil ◽  
Bashir Samir
Keyword(s):  

Author(s):  
Nipjyoti Bharadwaj ◽  
Praveen Edara ◽  
Carlos Sun

Identification of crash risk factors and enhancing safety at work zones is a major priority for transportation agencies. There is a critical need for collecting comprehensive data related to work zone safety. The naturalistic driving study (NDS) data offers a rare opportunity for a first-hand view of crashes and near-crashes (CNC) that occur in and around work zones. NDS includes information related to driver behavior and various non-driving related tasks performed while driving. Thus, the impact of driver behavior on crash risk along with infrastructure and traffic variables can be assessed. This study: (1) investigated risk factors associated with safety critical events occurring in a work zone; (2) developed a binary logistic regression model to estimate crash risk in work zones; and (3) quantified risk for different factors using matched case-control design and odds ratios (OR). The predictive ability of the model was evaluated by developing receiver operating characteristic curves for training and validation datasets. The results indicate that performing a non-driving related secondary task for more than 6 seconds increases the CNC risk by 5.46 times. Driver inattention was found to be the most critical behavioral factor contributing to CNC risk with an odds ratio of 29.06. In addition, traffic conditions corresponding to Level of Service (LOS) D exhibited the highest level of CNC risk in work zones. This study represents one of the first efforts to closely examine work zone events in the Transportation Research Board’s second Strategic Highway Research Program (SHRP 2) NDS data to better understand factors contributing to increased crash risk in work zones.


Author(s):  
Kristin Kersavage ◽  
Nicholas P. Skinner ◽  
John D. Bullough ◽  
Philip M. Garvey ◽  
Eric T. Donnell ◽  
...  

Flashing yellow warning lights notify drivers about the presence of work along the road. Current standards for these lights address performance of the individual light but not how lights should function when multiple lights are used. In the present study, warning lights were used to delineate a lane change taper in a simulated work zone. Lights flashed with varying intensities and either randomly or in sequence, with lights flashing in turn along the length of the lane change taper, either to the right or to the left. In half of the trials, a flashing police light bar was used on a vehicle located within the simulated work zone. Participants were asked to drive a vehicle approaching the work zone and to identify, as quickly as possible, in which direction the taper’s lane change was (either to the right or left). Drivers were able to correctly identify the taper from farther away when the lights flashed in a sequential pattern than when the flash pattern was random; and the presence of a police light bar resulted in shorter identification distances. The results, along with previous research, can inform standards for the use of flashing lights and police lights in work zones for the safety of drivers and workers.


Sign in / Sign up

Export Citation Format

Share Document