Function-specific Design Principles for the Electronic Health Record

Author(s):  
Jason J. Saleem ◽  
Jennifer Herout ◽  
Nancy R. Wilck

This practice-oriented paper provides a collection of design principles that are specific to certain functions within the electronic health record (EHR). Design principles for EHRs tend to be broad rules of thumb rather than specific and actionable because the relevant literature is organized by specific EHR functions. That is, a good amount of research has been conducted on specific functions, rather than EHRs as a whole. Based on the relevant literature, we provide design principles with underlying rationale for progress notes, problem list, consults, clinical reminders, clinical decision support, medication list, medication alerts, and medication reconciliation. This paper is meant to offer a collection of practical guidelines for designers, grounded in the academic literature, that are more actionable than broad usability heuristics. Future work should include refinement of these principles through systematic literature review and the inclusion of additional EHR functions.

2021 ◽  
Vol 147 ◽  
pp. 104349
Author(s):  
Thomas McGinn ◽  
David A. Feldstein ◽  
Isabel Barata ◽  
Emily Heineman ◽  
Joshua Ross ◽  
...  

2021 ◽  
Vol 39 (28_suppl) ◽  
pp. 324-324
Author(s):  
Isaac S. Chua ◽  
Elise Tarbi ◽  
Jocelyn H. Siegel ◽  
Kate Sciacca ◽  
Anne Kwok ◽  
...  

324 Background: Delivering goal-concordant care to patients with advanced cancer requires identifying eligible patients who would benefit from goals of care (GOC) conversations; training clinicians how to have these conversations; conducting conversations in a timely manner; and documenting GOC conversations that can be readily accessed by care teams. We used an existing, locally developed electronic cancer care clinical pathways system to guide oncologists toward these conversations. Methods: To identify eligible patients, pathways directors from 12 oncology disease centers identified therapeutic decision nodes for each pathway that corresponded to a predicted life expectancy of ≤1 year. When oncologists selected one of these pre-identified pathways nodes, the decision was captured in a relational database. From these patients, we sought evidence of GOC documentation within the electronic health record by extracting coded data from the advance care planning (ACP) module—a designated area within the electronic health record for clinicians to document GOC conversations. We also used rule-based natural language processing (NLP) to capture free text GOC documentation within these same patients’ progress notes. A domain expert reviewed all progress notes identified by NLP to confirm the presence of GOC documentation. Results: In a pilot sample obtained between March 20 and September 25, 2020, we identified a total of 21 pathway nodes conveying a poor prognosis, which represented 91 unique patients with advanced cancer. Among these patients, the mean age was 62 (SD 13.8) years old; 55 (60.4%) patients were female, and 69 (75.8%) were non-Hispanic White. The cancers most represented were thoracic (32 [35.2%]), breast (31 [34.1%]), and head and neck (13 [14.3%]). Within the 3 months leading up to the pathways decision date, a total 62 (68.1%) patients had any GOC documentation. Twenty-one (23.1%) patients had documentation in both the ACP module and NLP-identified progress notes; 5 (5.5%) had documentation in the ACP module only; and 36 (39.6%) had documentation in progress notes only. Twenty-two unique clinicians utilized the ACP module, of which 1 (4.5%) was an oncologist and 21 (95.5%) were palliative care clinicians. Conclusions: Approximately two thirds of patients had any GOC documentation. A total of 26 (28.6%) patients had any GOC documentation in the ACP module, and only 1 oncologist documented using the ACP module, where care teams can most easily retrieve GOC information. These findings provide an important baseline for future quality improvement efforts (e.g., implementing serious illness communications training, increasing support around ACP module utilization, and incorporating behavioral nudges) to enhance oncologists’ ability to conduct and to document timely, high quality GOC conversations.


2014 ◽  
Vol 05 (02) ◽  
pp. 368-387 ◽  
Author(s):  
K. Cato ◽  
B. Sheehan ◽  
S. Patel ◽  
J. Duchon ◽  
P. DeLaMora ◽  
...  

SummaryObjective: To develop and implement a clinical decision support (CDS) tool to improve antibiotic prescribing in neonatal intensive care units (NICUs) and to evaluate user acceptance of the CDS tool.Methods: Following sociotechnical analysis of NICU prescribing processes, a CDS tool for empiric and targeted antimicrobial therapy for healthcare-associated infections (HAIs) was developed and incorporated into a commercial electronic health record (EHR) in two NICUs. User logs were reviewed and NICU prescribers were surveyed for their perceptions of the CDS tool.Results: The CDS tool aggregated selected laboratory results, including culture results, to make treatment recommendations for common clinical scenarios. From July 2010 to May 2012, 1,303 CDS activations for 452 patients occurred representing 22% of patients prescribed antibiotics during this period. While NICU clinicians viewed two culture results per tool activation, prescribing recommendations were viewed during only 15% of activations. Most (63%) survey respondents were aware of the CDS tool, but fewer (37%) used it during their most recent NICU rotation. Respondents considered the most useful features to be summarized culture results (43%) and antibiotic recommendations (48%).Discussion: During the study period, the CDS tool functionality was hindered by EHR upgrades, implementation of a new laboratory information system, and changes to antimicrobial testing methodologies. Loss of functionality may have reduced viewing antibiotic recommendations. In contrast, viewing culture results was frequently performed, likely because this feature was perceived as useful and functionality was preserved.Conclusion: To improve CDS tool visibility and usefulness, we recommend early user and information technology team involvement which would facilitate use and mitigate implementation challenges.Citation: Hum RS, Cato K, Sheehan B, Patel S, Duchon J, DeLaMora P, Ferng YH, Graham P, Vawdrey DK, Perlman J, Larson E, Saiman L. Developing clinical decision support within a commercial electronic health record system to improve antimicrobial prescribing in the neonatal ICU. Appl Clin Inf 2014; 5: 368–387 http://dx.doi.org/10.4338/ACI-2013-09-RA-0069


2014 ◽  
Vol 21 (3) ◽  
pp. 522-528 ◽  
Author(s):  
Barry R Goldspiel ◽  
Willy A Flegel ◽  
Gary DiPatrizio ◽  
Tristan Sissung ◽  
Sharon D Adams ◽  
...  

2017 ◽  
Vol 25 (5) ◽  
pp. 496-506 ◽  
Author(s):  
Adam Wright ◽  
Angela Ai ◽  
Joan Ash ◽  
Jane F Wiesen ◽  
Thu-Trang T Hickman ◽  
...  

Abstract Objective To develop an empirically derived taxonomy of clinical decision support (CDS) alert malfunctions. Materials and Methods We identified CDS alert malfunctions using a mix of qualitative and quantitative methods: (1) site visits with interviews of chief medical informatics officers, CDS developers, clinical leaders, and CDS end users; (2) surveys of chief medical informatics officers; (3) analysis of CDS firing rates; and (4) analysis of CDS overrides. We used a multi-round, manual, iterative card sort to develop a multi-axial, empirically derived taxonomy of CDS malfunctions. Results We analyzed 68 CDS alert malfunction cases from 14 sites across the United States with diverse electronic health record systems. Four primary axes emerged: the cause of the malfunction, its mode of discovery, when it began, and how it affected rule firing. Build errors, conceptualization errors, and the introduction of new concepts or terms were the most frequent causes. User reports were the predominant mode of discovery. Many malfunctions within our database caused rules to fire for patients for whom they should not have (false positives), but the reverse (false negatives) was also common. Discussion Across organizations and electronic health record systems, similar malfunction patterns recurred. Challenges included updates to code sets and values, software issues at the time of system upgrades, difficulties with migration of CDS content between computing environments, and the challenge of correctly conceptualizing and building CDS. Conclusion CDS alert malfunctions are frequent. The empirically derived taxonomy formalizes the common recurring issues that cause these malfunctions, helping CDS developers anticipate and prevent CDS malfunctions before they occur or detect and resolve them expediently.


2020 ◽  
Vol 27 (6) ◽  
pp. 917-923
Author(s):  
Liqin Wang ◽  
Suzanne V Blackley ◽  
Kimberly G Blumenthal ◽  
Sharmitha Yerneni ◽  
Foster R Goss ◽  
...  

Abstract Objective Incomplete and static reaction picklists in the allergy module led to free-text and missing entries that inhibit the clinical decision support intended to prevent adverse drug reactions. We developed a novel, data-driven, “dynamic” reaction picklist to improve allergy documentation in the electronic health record (EHR). Materials and Methods We split 3 decades of allergy entries in the EHR of a large Massachusetts healthcare system into development and validation datasets. We consolidated duplicate allergens and those with the same ingredients or allergen groups. We created a reaction value set via expert review of a previously developed value set and then applied natural language processing to reconcile reactions from structured and free-text entries. Three association rule-mining measures were used to develop a comprehensive reaction picklist dynamically ranked by allergen. The dynamic picklist was assessed using recall at top k suggested reactions, comparing performance to the static picklist. Results The modified reaction value set contained 490 reaction concepts. Among 4 234 327 allergy entries collected, 7463 unique consolidated allergens and 469 unique reactions were identified. Of the 3 dynamic reaction picklists developed, the 1 with the optimal ranking achieved recalls of 0.632, 0.763, and 0.822 at the top 5, 10, and 15, respectively, significantly outperforming the static reaction picklist ranked by reaction frequency. Conclusion The dynamic reaction picklist developed using EHR data and a statistical measure was superior to the static picklist and suggested proper reactions for allergy documentation. Further studies might evaluate the usability and impact on allergy documentation in the EHR.


2019 ◽  
Vol 28 (9) ◽  
pp. 762-768 ◽  
Author(s):  
Norman Lance Downing ◽  
Joshua Rolnick ◽  
Sarah F Poole ◽  
Evan Hall ◽  
Alexander J Wessels ◽  
...  

BackgroundSepsis remains the top cause of morbidity and mortality of hospitalised patients despite concerted efforts. Clinical decision support for sepsis has shown mixed results reflecting heterogeneous populations, methodologies and interventions.ObjectivesTo determine whether the addition of a real-time electronic health record (EHR)-based clinical decision support alert improves adherence to treatment guidelines and clinical outcomes in hospitalised patients with suspected severe sepsis.DesignPatient-level randomisation, single blinded.SettingMedical and surgical inpatient units of an academic, tertiary care medical centre.Patients1123 adults over the age of 18 admitted to inpatient wards (intensive care units (ICU) excluded) at an academic teaching hospital between November 2014 and March 2015.InterventionsPatients were randomised to either usual care or the addition of an EHR-generated alert in response to a set of modified severe sepsis criteria that included vital signs, laboratory values and physician orders.Measurements and main resultsThere was no significant difference between the intervention and control groups in primary outcome of the percentage of patients with new antibiotic orders at 3 hours after the alert (35% vs 37%, p=0.53). There was no difference in secondary outcomes of in-hospital mortality at 30 days, length of stay greater than 72 hours, rate of transfer to ICU within 48 hours of alert, or proportion of patients receiving at least 30 mL/kg of intravenous fluids.ConclusionsAn EHR-based severe sepsis alert did not result in a statistically significant improvement in several sepsis treatment performance measures.


2017 ◽  
Vol 08 (03) ◽  
pp. 910-923 ◽  
Author(s):  
Thomas Yackel ◽  
Paul Gorman ◽  
David Dorr ◽  
Steven Kassakian

SummaryObjectives: Determine if clinical decision support (CDS) malfunctions occur in a commercial electronic health record (EHR) system, characterize their pathways and describe methods of detection.Methods: We retrospectively examined the firing rate for 226 alert type CDS rules for detection of anomalies using both expert visualization and statistical process control (SPC) methods over a five year period. Candidate anomalies were investigated and validated.Results: Twenty-one candidate CDS anomalies were identified from 8,300 alert-months. Of these candidate anomalies, four were confirmed as CDS malfunctions, eight as false-positives, and nine could not be classified. The four CDS malfunctions were a result of errors in knowledge management: 1) inadvertent addition and removal of a medication code to the electronic formulary list; 2) a seasonal alert which was not activated; 3) a change in the base data structures; and 4) direct editing of an alert related to its medications. 154 CDS rules (68%) were amenable to SPC methods and the test characteristics were calculated as a sensitivity of 95%, positive predictive value of 29% and F-measure 0.44.Discussion: CDS malfunctions were found to occur in our EHR. All of the pathways for these malfunctions can be described as knowledge management errors. Expert visualization is a robust method of detection, but is resource intensive. SPC-based methods, when applicable, perform reasonably well retrospectively.Conclusion: CDS anomalies were found to occur in a commercial EHR and visual detection along with SPC analysis represents promising methods of malfunction detection.Citation: Kassakian SZ, Yackel TR, Gorman PN, Dorr DA. Clinical decisions support malfunctions in a commercial electronic health record. Appl Clin Inform 2017; 8: 910–923 https://doi.org/10.4338/ACI-2017-01-RA-0006


Sign in / Sign up

Export Citation Format

Share Document