Human Perception and Performance in 3D Virtual Environments

Author(s):  
Elizabeth Thorpe Davis ◽  
Gregory M. Corso ◽  
Woodrow Barfield ◽  
Gregory M. Corso ◽  
Robert G. Eggleston ◽  
...  
Author(s):  
Elizabeth Thorpe Davis ◽  
Larry F. Hodges

Two fundamental purposes of human spatial perception, in either a real or virtual 3D environment, are to determine where objects are located in the environment and to distinguish one object from another. Although various sensory inputs, such as haptic and auditory inputs, can provide this spatial information, vision usually provides the most accurate, salient, and useful information (Welch and Warren, 1986). Moreover, of the visual cues available to humans, stereopsis provides an enhanced perception of depth and of three-dimensionality for a visual scene (Yeh and Silverstein, 1992). (Stereopsis or stereoscopic vision results from the fusion of the two slightly different views of the external world that our laterally displaced eyes receive (Schor, 1987; Tyler, 1983).) In fact, users often prefer using 3D stereoscopic displays (Spain and Holzhausen, 1991) and find that such displays provide more fun and excitement than do simpler monoscopic displays (Wichanski, 1991). Thus, in creating 3D virtual environments or 3D simulated displays, much attention recently has been devoted to visual 3D stereoscopic displays. Yet, given the costs and technical requirements of such displays, we should consider several issues. First, we should consider in what conditions and situations these stereoscopic displays enhance perception and performance. Second, we should consider how binocular geometry and various spatial factors can affect human stereoscopic vision and, thus, constrain the design and use of stereoscopic displays. Finally, we should consider the modeling geometry of the software, the display geometry of the hardware, and some technological limitations that constrain the design and use of stereoscopic displays by humans. In the following section we consider when 3D stereoscopic displays are useful and why they are useful in some conditions but not others. In the section after that we review some basic concepts about human stereopsis and fusion that are of interest to those who design or use 3D stereoscopic displays. Also in that section we point out some spatial factors that limit stereopsis and fusion in human vision as well as some potential problems that should be considered in designing and using 3D stereoscopic displays. Following that we discuss some software and hardware issues, such as modelling geometry and display geometry as well as geometric distortions and other artifacts that can affect human perception.


2012 ◽  
Author(s):  
R. A. Grier ◽  
H. Thiruvengada ◽  
S. R. Ellis ◽  
P. Havig ◽  
K. S. Hale ◽  
...  

2003 ◽  
Author(s):  
Carlo Galimberti ◽  
Gloria Belloni ◽  
Maddalena Grassi ◽  
Alberto Cattaneo ◽  
Valentina Manias ◽  
...  

Author(s):  
Richard Stone ◽  
Minglu Wang ◽  
Thomas Schnieders ◽  
Esraa Abdelall

Human-robotic interaction system are increasingly becoming integrated into industrial, commercial and emergency service agencies. It is critical that human operators understand and trust automation when these systems support and even make important decisions. The following study focused on human-in-loop telerobotic system performing a reconnaissance operation. Twenty-four subjects were divided into groups based on level of automation (Low-Level Automation (LLA), and High-Level Automation (HLA)). Results indicated a significant difference between low and high word level of control in hit rate when permanent error occurred. In the LLA group, the type of error had a significant effect on the hit rate. In general, the high level of automation was better than the low level of automation, especially if it was more reliable, suggesting that subjects in the HLA group could rely on the automatic implementation to perform the task more effectively and more accurately.


2012 ◽  
Vol 21 (1) ◽  
pp. 58-68 ◽  
Author(s):  
Sergio Moya ◽  
Dani Tost ◽  
Sergi Grau

We describe a graphical narrative editor that we have developed for the design of serious games for cognitive neurorehabilitation. The system is addressed to neuropsychologists. It is aimed at providing them an easy, user-friendly, and fast way of specifying the therapeutical contents of the rehabilitation tasks that constitute the serious games. The editor takes as input a description of the virtual task environment and the actions allowed inside. Therapists use it to describe the actions that they expect patients to do in order to fulfill the goals of the task and the behavior of the game if patients do not reach their goals. The output of the system is a complete description of the task logic. We have designed a 3D game platform that provides to the editor a description the 3D virtual environments, and that translates the task description created in the editor into the task logic. The main advantage of the system is that it is fully automatic, it allows therapists to interactively design the tasks and immediately validate them by realizing it virtually. We describe the design of the two applications and present the results of system testing.


Sign in / Sign up

Export Citation Format

Share Document