scholarly journals Fault detection in an engine by fusing information from multivibration sensors

2017 ◽  
Vol 13 (7) ◽  
pp. 155014771771905 ◽  
Author(s):  
Ruili Zeng ◽  
Lingling Zhang ◽  
Jianmin Mei ◽  
Hong Shen ◽  
Huimin Zhao

Fault detection based on the vibration signal of an engine is an effective non-disassembly method for engine diagnosis because a vibration signal includes a lot of information about the condition of the engine. To obtain multi-information for this article, three vibration sensors were placed at different test points to collect vibration information about the engine operating process. A method combining support vector data description and Dempster–Shafer evidence theory was developed for engine fault detection, where support vector data description is used to recognize the data from a single sensor and Dempster–Shafer evidence theory is used to classify the information from the three vibration sensors in detail. The experimental results show that the fault detection accuracy using three sensors is higher than using a single sensor. The multi-complementary sensor information can be adopted in the proposed method, which will increase the reliability of fault detection and reduce uncertainty in the recognition of a fault.

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Yi-Hung Liu ◽  
Yung Ting ◽  
Shian-Shing Shyu ◽  
Chang-Kuo Chen ◽  
Chung-Lin Lee ◽  
...  

Face detection is a crucial prestage for face recognition and is often treated as a binary (face and nonface) classification problem. While this strategy is simple to implement, face detection accuracy would drop when nonface training patterns are undersampled. To avoid these problems, we propose in this paper a one-class learning-based face detector called support vector data description (SVDD) committee, which consists of several SVDD members, each of which is trained on a subset of face patterns. Nonfaces are not required in the training of the SVDD committee. Therefore, the face detection accuracy of SVDD committee is independent of the nonface training patterns. Moreover, the proposed SVDD committee is also able to improve generalization ability of the original SVDD when the face data set has a multicluster distribution. Experiments carried out on the extended MIT face data set show that the proposed SVDD committee can achieve better face detection accuracy than the widely used SVM face detector and performs better than other one-class classifiers, including the original SVDD and the kernel principal component analysis (Kernel PCA).


Sign in / Sign up

Export Citation Format

Share Document