scholarly journals SecureSurgiNET: A framework for ensuring security in telesurgery

2019 ◽  
Vol 15 (9) ◽  
pp. 155014771987381 ◽  
Author(s):  
Sohail Iqbal ◽  
Shahzad Farooq ◽  
Khuram Shahzad ◽  
Asad Waqar Malik ◽  
Mian M Hamayun ◽  
...  

The notion of surgical robotics is actively being extended to enable telesurgery, where both the surgeon and patient are remotely located and connected via a public network, which leads to many security risks. Being a safety-critical application, it is highly important to make telesurgery robust and secure against active and passive attacks. In this article, we propose the first complete framework, called SecureSurgiNET, for ensuring security in telesurgery environments. SecureSurgiNET is primarily based on a set of well-established protocols to provide a fool-proof telesurgical robotic system. For increasing the efficiency of secured telesurgery environments, the idea of a telesurgical authority is introduced that ensures the integrity, identity management, authentication policy implementation, and postoperative data security. An analysis is provided describing the security and throughput of Advanced Encryption Standard during the intraoperative phase of SecureSurgiNET. Moreover, we have tabulated the possible attacks on SecureSurgiNET along with the devised defensive measures. Finally, we also present a time complexity analysis of the SecureSurgiNET through simulations.

2019 ◽  
Vol 17 (1/2) ◽  
pp. 191-197 ◽  
Author(s):  
Andrew Boyles Petersen

In the past year, transportation rental companies, including Bird, Lime, and Spin, have dropped hundreds of thousands of rental scooters across North America. Relying on mobile apps and scooter-mounted GPS units, these devices have access to a wide-variety of consumer data, including location, phone number, phone metadata, and more. Pairing corroborated phone and scooter GPS data with a last-mile transportation business model, scooter companies are able to collect a unique, highly identifying dataset on users. Data collected by these companies can be utilized by internal researchers or sold to advertisers and data brokers. Access to so much consumer data, however, poses serious security risks. ­Although Bird, Lime, and Spin posit electric scooters as environmentally friendly and accessible transportation, they also allow for unethical uses of user data through vaguely-worded terms of service. To promote more equitable transportation practices, this article will explore the implications of dockless scooter geotracking, as well as related infrastructure, privacy, and data security ramifications.


Author(s):  
Musa. M. Yahaya ◽  
Aminat Ajibola

Recently, the rate of data transfer over the internet globally has increased and this called for more data security as security of data is of great concern for individuals as well as business owners. Cryptography and steganography are two major key players for data security technique. Cryptography is use to perform encryption on the secrete message while steganography hides the secrete message in digital media, image in this regards. This paper employed these two techniques using Advanced Encryption Standard (AES) for the cryptography and Least Significant Bit (LSB) for the steganography. Combining the two algorithms ensured data integrity, data security, and flexibility. The changes in the secrete message carrier (Stego) is insignificant and is often not noticeable by the nicked eyes, thus this make the interception of the message often difficult by intruder.


2020 ◽  
Vol 1 (1) ◽  
pp. 11-22
Author(s):  
Asaad A. Hani

There is a great research in the field of data security these days. Storing information digitally in the cloud and transferring it over the internet proposes risks of disclosure and unauthorized access; thus, users, organizations, and businesses are adapting new technology and methods to protect their data from breaches. In this paper, we introduce a method to provide higher security for data transferred over the internet, or information based in the cloud. The introduced method for the most part depends on the Advanced Encryption Standard (AES) algorithm, which is currently the standard for secret key encryption. A standardized version of the algorithm was used by The Federal Information Processing Standard 197 called Rijndael for the AES. The AES algorithm processes data through a combination of exclusive-OR operations (XOR), octet substitution with an S-box, row and column rotations, and MixColumn operations. The fact that the algorithm could be easily implemented and run on a regular computer in a reasonable amount of time made it highly favorable and successful. In this paper, the proposed method provides a new dimension of security to the AES algorithm by securing the key itself such that even when the key is disclosed; the text cannot be deciphered. This is done by enciphering the key using Output Feedback Block Mode Operation. This introduces a new level of security to the key in a way, in which deciphering the data requires prior knowledge of the key and the algorithm used to encipher the key for the purpose of deciphering the transferred text.


2021 ◽  
pp. 146808742110397
Author(s):  
Haotian Chen ◽  
Kun Zhang ◽  
Kangyao Deng ◽  
Yi Cui

Real-time simulation models play an important role in the development of engine control systems. The mean value model (MVM) meets real-time requirements but has limited accuracy. By contrast, a crank-angle resolved model, such as the filling -and-empty model, can be used to simulate engine performance with high accuracy but cannot meet real-time requirements. Time complexity analysis is used to develop a real-time crank-angle resolved model with high accuracy in this study. A method used in computer science, program static analysis, is used to theoretically determine the computational time for a multicylinder engine filling-and-empty (crank-angle resolved) model. Then, a prediction formula for the engine cycle simulation time is obtained and verified by a program run test. The influence of the time step, program structure, algorithm and hardware on the cycle simulation time are analyzed systematically. The multicylinder phase shift method and a fast calculation method for the turbocharger characteristics are used to improve the crank-angle resolved filling-and-empty model to meet real-time requirements. The improved model meets the real-time requirement, and the real-time factor is improved by 3.04 times. A performance simulation for a high-power medium-speed diesel engine shows that the improved model has a max error of 5.76% and a real-time factor of 3.93, which meets the requirement for a hardware-in-the-loop (HIL) simulation during control system development.


Author(s):  
Suzanna Schmeelk ◽  
Kutub Thakur ◽  
Md Liakat Ali ◽  
Denise M. Dragos ◽  
Abdullah Al-Hayajneh ◽  
...  

Generally, classification accuracy is very important to gene processing and selection and cancer classification. It is needed to achieve better cancer treatments and improve medical drug assignments. However, the time complexity analysis will enhance the application's significance. To answer the research questions in Chapter 1, several case studies have been implemented (see Chapters 4 and 5), each was essential to sustain the methodologies discussed in Chapter 3. The study used a colon-cancer dataset comprising 2000 genes. The best search algorithm, GA, showed high performance with a good efficient time complexity. However, both DTs and SVMs showed the best classification contribution with reference to performance accuracy and time efficiency. However, it is difficult to apply a completely fair comparative study because existing algorithms and methods were tested by different authors to reflect the effectiveness and powerful of their own methods.


Algorithms ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 97
Author(s):  
Antoine Genitrini ◽  
Martin Pépin

In the context of combinatorial sampling, the so-called “unranking method” can be seen as a link between a total order over the objects and an effective way to construct an object of given rank. The most classical order used in this context is the lexicographic order, which corresponds to the familiar word ordering in the dictionary. In this article, we propose a comparative study of four algorithms dedicated to the lexicographic unranking of combinations, including three algorithms that were introduced decades ago. We start the paper with the introduction of our new algorithm using a new strategy of computations based on the classical factorial numeral system (or factoradics). Then, we present, in a high level, the three other algorithms. For each case, we analyze its time complexity on average, within a uniform framework, and describe its strengths and weaknesses. For about 20 years, such algorithms have been implemented using big integer arithmetic rather than bounded integer arithmetic which makes the cost of computing some coefficients higher than previously stated. We propose improvements for all implementations, which take this fact into account, and we give a detailed complexity analysis, which is validated by an experimental analysis. Finally, we show that, even if the algorithms are based on different strategies, all are doing very similar computations. Lastly, we extend our approach to the unranking of other classical combinatorial objects such as families counted by multinomial coefficients and k-permutations.


Sign in / Sign up

Export Citation Format

Share Document