AES Enhanced by Output Feedback Block Mode Operation

2020 ◽  
Vol 1 (1) ◽  
pp. 11-22
Author(s):  
Asaad A. Hani

There is a great research in the field of data security these days. Storing information digitally in the cloud and transferring it over the internet proposes risks of disclosure and unauthorized access; thus, users, organizations, and businesses are adapting new technology and methods to protect their data from breaches. In this paper, we introduce a method to provide higher security for data transferred over the internet, or information based in the cloud. The introduced method for the most part depends on the Advanced Encryption Standard (AES) algorithm, which is currently the standard for secret key encryption. A standardized version of the algorithm was used by The Federal Information Processing Standard 197 called Rijndael for the AES. The AES algorithm processes data through a combination of exclusive-OR operations (XOR), octet substitution with an S-box, row and column rotations, and MixColumn operations. The fact that the algorithm could be easily implemented and run on a regular computer in a reasonable amount of time made it highly favorable and successful. In this paper, the proposed method provides a new dimension of security to the AES algorithm by securing the key itself such that even when the key is disclosed; the text cannot be deciphered. This is done by enciphering the key using Output Feedback Block Mode Operation. This introduces a new level of security to the key in a way, in which deciphering the data requires prior knowledge of the key and the algorithm used to encipher the key for the purpose of deciphering the transferred text.

2021 ◽  
Vol 10 (2) ◽  
pp. 21-30
Author(s):  
Ahmida ABIODUN ◽  
Olanrewaju LAWAL ◽  
Oyediran OYEBIYI ◽  
Odiete JOSEPH ◽  
Adeyemi ADETORO

Data security is a key aspect of today’s communication trend and growth. Various mechanisms have been developed to achieve this security. One is cryptography, which represents a most effective method of enhancing security and confidentiality of data. In this work, a hybrid based 136bit key algorithm involving a sequential combination of XOR (Exclusive –Or) encryption and AES (Advanced Encryption Standard) algorithm to enhance the security strength is developed. The hybrid algorithm performance is matched with XOR encryption and AES algorithm using encryption and decryption time, throughput of encryption, space complexity and CPU process time.


2020 ◽  
Vol 8 (5) ◽  
pp. 1836-1839

The password system is the most conventional method among validation techniques on the internet and is operated more easily and effectively than other methods. However, it is a vulnerable method against attacks such as eavesdropping or replay attack. To prevail over this problem, OTP (One Time Password) technique is used. The most popular OTP is HOTP algorithm, which is based on one-way hash function SHA-1. The recent researches show the weakness of the hash function. So, in this paper we created a module which uses another cryptographic algorithm. Cryptography in the current world serves an important role in data security. Cryptography means writing of secret codes (cipher text) which is in an unintelligible form and cannot be read unless we have a perfect key to decode it. The proposed method is AES algorithm (128 bit) followed by Middle Square method to generate an OTP. As OTP is a 4-6 bit number we will decrease the AES output to a 4-6 bit through Middle Square method and this OTP can be used as a security tool in many cases like online transaction purposes.


Author(s):  
Mahadi Winafil ◽  
Sinar Sinurat ◽  
Taronisokhi Zebua

Digital images that are personal and confidential are very vulnerable to wiretapping by irresponsible parties. Especially if distributed via the internet network such as on Facebook, WhatsApp and e-mail chat based applications. Images that are sent sometimes are often confidential images and must be maintained. In order to maintain the security of digital images can be done by utilizing cryptographic techniques. Cryptographic techniques can secure digital images by changing pixel values from digital images so as to produce different pixel values from the original image to be secured. This research will use AES 128 bit and Triple DES methods for encryption and decryption of digital images on client-server based applications. The results of the encryption AES algorithm will be re-encrypted with the Triple DES Algorithm so as to produce pixel values that are far different from the original pixel values. Keywords: cryptography, image, AES, Triple DES


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Alexander DeTrano ◽  
Naghmeh Karimi ◽  
Ramesh Karri ◽  
Xiaofei Guo ◽  
Claude Carlet ◽  
...  

Masking countermeasures, used to thwart side-channel attacks, have been shown to be vulnerable to mask-extraction attacks. State-of-the-art mask-extraction attacks on the Advanced Encryption Standard (AES) algorithm target S-Box recomputation schemes but have not been applied to scenarios where S-Boxes are precomputed offline. We propose an attack targeting precomputed S-Boxes stored in nonvolatile memory. Our attack targets AES implemented in software protected by a low entropy masking scheme and recovers the masks with 91% success rate. Recovering the secret key requires fewer power traces (in fact, by at least two orders of magnitude) compared to a classical second-order attack. Moreover, we show that this attack remains viable in a noisy environment or with a reduced number of leakage points. Eventually, we specify a method to enhance the countermeasure by selecting a suitable coset of the masks set.


Author(s):  
Huda Najeeb

The goal of encryption voice is to ensure the preservation of the conversation details and not to allow anyone to tamper with or see it. This conversation is either secret or very private; no one can understand the substance of that information or messages only authorized persons who have own secret key. The best method to protect the voice message from unauthorized persons is to use both cryptography and steganography. This paper reviews the Advanced Encryption Standard (AES) algorithm used for encrypting voice message and  the Least Signification Bit steganography (LSB) used for embedding encrypted voice message with related key in color image without impacting the content and quality of it. After hiding a secret voice in an image, Stego image is created then is sent to the recipient. The mean square error (MSE) and the signal-to-noise ratio (PSNR) is calculated to measure the quality of the sent image. The findings of the research are that the stego image cannot be distinguished by the naked eye from the original cover image when the bit value is 1 or 2 and thus we reach the goal to cover the presence of a hidden sound inside.


Author(s):  
Taufik Hidayat ◽  
Rahutomo Mahardiko

Cloud computing is one revolution in information technology (IT) that can share resources, services and data through a network among users. Because users have same rights on the network to transfer data, data are vulnerable to be attacked by unauthorized person. Lately, data security in a system only concentrates on data storage on cloud by utilizing internet security, but a little concentration is found during data transfer. By considering security as a serious problem, an encryption-based proposed system is presented to secure during data transfer. Authors propose an approach to boost system security during data transfer in order to prevent data theft by unauthorized person. To prevent an attack by unauthorized person, Advanced Encryption Standard (AES) will be proposed to secure data transfer and storage in cloud computing. For better future, authors will propose Systematic Literature Review (SLR) to generate suggestions and opportunities in AES cloud computing.


Author(s):  
Zolidah Kasiran ◽  
Hikma Farah Ali ◽  
Noorhayati Mohamed Noor

The advancement of the data communication technologies has increased the traffic of data exchange over the internet and at the same time created the opportunity of data attack by various party.  This paper present  Time Performance Analysis Of Advanced Encryption Standard And Data Encryption Standard  in Data Security Transaction<strong>. </strong>In this study we proposed an AES algorithm with  different key size, and different file format. Our aim is to safely to transfer the file for using the AES algorithm. Proposed algorithm has done by analyzing the different time taken for both AES and DES, experiments were done by three different file  format which were text, image, and voice. Each file format type was tested with five different file sizes. The result of each experiments were analysed and it was confirmed that  the AES algorithm have better performance in term of time taken as compared to DES.


2018 ◽  
Vol 17 (1) ◽  
pp. 66
Author(s):  
Ida Bagus Adisimakrisna Peling ◽  
Nyoman Putra Sastra

Ease of accessing and delivering information makes the Internet more and more needed. But the ease also provides greater opportunities for leaking of information that is confidential. To handle the security of information exchange that is confidential then developed the method of data security on audio using AES (Advanced Encryption Standard) and EAS (Enhanced Audio Steganography) algorithm. From the research results can be concluded by using AES method as cryptography and EAS as steganography, audio file quality can be said good because of the overall test scenario conducted the lowest SNR value obtained is 49.33dB while the highest SNR value is 51.10dB.


Data transmission with protection is main concept which is getting demand now a days for which number of encryption of data techniques are developed and now in this paper Advanced Encryption Standard (AES) Algorithm is used and is implemented on FPGA kit using vertex-3 family. We use 128 bits consists of input, key data, output data for this design. It is called an iterative looping with replacement box, key, loop in this design for both encryption and decryption of data. We use Xilinx software platform for simulation of our design that is AES by which area utilization and throughput is increased for achieving low power consumption, high data security, reduced latency and easy architectural design. This data operation is applicable in many areas.


Sign in / Sign up

Export Citation Format

Share Document