scholarly journals A lifetime-enhancing cooperative data gathering and relaying algorithm for cluster-based wireless sensor networks

2020 ◽  
Vol 16 (2) ◽  
pp. 155014771990011 ◽  
Author(s):  
G Pius Agbulu ◽  
G Joselin Retna Kumar ◽  
A Vimala Juliet

Despite unique energy-saving dispositions of cluster-based routing protocols, clustered wireless sensor networks with static sinks typically have problems of unbalanced energy consumptions, as the cluster head nodes around the sink are typically loaded with traffic from upper levels of clusters. This results in reduced lifetimes of the nodes and deterioration of other crucial performances. Meanwhile, it has been inferred from current literature that dedicated relay cooperation in cluster-based wireless sensor networks guarantees longer lifetime of the nodes and more improved performance. Therefore, to attain further enhanced performance among the current schemes, a lifetime-enhancing cooperative data gathering and relaying algorithm for cluster-based wireless sensor networks is proposed in this article. The proposed lifetime-enhancing cooperative data gathering and relaying algorithm shares the nodes into clusters using a hybrid K-means clustering algorithm that combines K-means clustering and Huffman coding algorithms. It makes full use of dedicated relay cooperative multi-hop communication with network coding mechanisms to achieve reduced data propagation cost from the various cluster sections to the central base station. The relay node selection is framed as a NP-hard problem, with regard to communication distances and residual energy metrics. Furthermore, to resolve the problem, a gradient descent algorithm is proposed. Simulation results endorse the proposed scheme to outperform related schemes in terms of latency, lifetime, and energy consumption and delivery rates.

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Fan Chao ◽  
Zhiqin He ◽  
Renkuan Feng ◽  
Xiao Wang ◽  
Xiangping Chen ◽  
...  

Tradition wireless sensor networks (WSNs) transmit data by single or multiple hops. However, some sensor nodes (SNs) close to a static base station forward data more frequently than others, which results in the problem of energy holes and makes networks fragile. One promising solution is to use a mobile node as a mobile sink (MS), which is especially useful in energy-constrained networks. In these applications, the tour planning of MS is a key to guarantee the network performance. In this paper, a novel strategy is proposed to reduce the latency of mobile data gathering in a WSN while the routing strategies and tour planning of MS are jointly optimized. First, the issue of network coverage is discussed before the appropriate number of clusters being calculated. A dynamic clustering scheme is then developed where a virtual cluster center is defined as the MS sojourn for data collection. Afterwards, a tour planning of MS based on prediction is proposed subject to minimizing the traveling distance to collect data. The proposed method is simulated in a MATLAB platform to show the overall performance of the developed system. Furthermore, the physical tests on a test rig are also carried out where a small WSN based on an unmanned aerial vehicle (UAV) is developed in our laboratory. The test results validate the feasibility and effectiveness of the method proposed.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Hongchun Qu ◽  
Libiao Lei ◽  
Xiaoming Tang ◽  
Ping Wang

For resource-constrained wireless sensor networks (WSNs), designing a lightweight intrusion detection technology has been a hot and difficult issue. In this paper, we proposed a lightweight intrusion detection method that was able to directly map the network status into sensor monitoring data received by base station, so that base station can sense the abnormal changes in the network. Our method is highlighted by the fusion of fuzzy c-means algorithm, one-class SVM, and sliding window procedure to effectively differentiate network attacks from abnormal data. Finally, the proposed method was tested on the wireless sensor network simulation software EXata and in real applications. The results showed that the intrusion detection method in this paper could effectively identify whether the abnormal data came from a network attack or just a noise. In addition, extra energy consumption can be avoided in all sensor monitoring nodes of the sensor network where our method has been deployed.


2020 ◽  
Vol 11 (1) ◽  
pp. 36-48
Author(s):  
Amiya Bhusan Bagjadab ◽  
Sushree Bibhuprada B. Priyadarshini

Wireless sensor networks are commonly used to monitor certain regions and to collect data for several application domains. Generally, in wireless sensor networks, data are routed in a multi-hop fashion towards a static sink. In this scenario, the nodes closer to the sink become heavily involved in packet forwarding, and their battery power is exhausted rapidly. This article proposes that a special node (i.e., mobile sink) will move in the specified region and collect the data from the sensors and transmit it to the base station such that the communication distance of the sensors will be reduced. The aim is to provide a track for the sink such that it covers maximum sensor nodes. Here, the authors compared two tracks theoretically and in the future will try to simulate the two tracks for the sink movement so as to identify the better one.


Sensors ◽  
2019 ◽  
Vol 19 (17) ◽  
pp. 3726 ◽  
Author(s):  
Zhang ◽  
Qi ◽  
Li

Monitoring of marine polluted areas is an emergency task, where efficiency and low-power consumption are challenging for the recovery of marine monitoring equipment. Wireless sensor networks (WSNs) offer the potential for low-energy recovery of marine observation beacons. Reducing and balancing network energy consumption are major problems for this solution. This paper presents an energy-saving clustering algorithm for wireless sensor networks based on k-means algorithm and fuzzy logic system (KFNS). The algorithm is divided into three phases according to the different demands of each recovery phase. In the monitoring phase, a distributed method is used to select boundary nodes to reduce network energy consumption. The cluster routing phase solves the extreme imbalance of energy of nodes for clustering. In the recovery phase, the inter-node weights are obtained based on the fuzzy membership function. The Dijkstra algorithm is used to obtain the minimum weight path from the node to the base station, and the optimal recovery order of the nodes is obtained by using depth-first search (DFS). We compare the proposed algorithm with existing representative methods. Experimental results show that the algorithm has a longer life cycle and a more efficient recovery strategy.


Sensors ◽  
2019 ◽  
Vol 19 (20) ◽  
pp. 4391 ◽  
Author(s):  
Juan-Carlos Cuevas-Martinez ◽  
Antonio-Jesus Yuste-Delgado ◽  
Antonio-Jose Leon-Sanchez ◽  
Antonio-Jose Saez-Castillo ◽  
Alicia Triviño-Cabrera

Clustering is presently one of the main routing techniques employed in randomly deployed wireless sensor networks. This paper describes a novel centralized unequal clustering method for wireless sensor networks. The goals of the algorithm are to prolong the network lifetime and increase the reliability of the network while not compromising the data transmission. In the proposed method, the Base Station decides on the cluster heads according to the best scores obtained from a Type-2 Fuzzy system. The input parameters of the fuzzy system are estimated by the base station or gathered from the network with a careful design that reduces the control message exchange. The whole network is controlled by the base station in a rounds-based schedule that alternates rounds when the base station elects cluster heads, with other rounds in which the cluster heads previously elected, gather data from their contributing nodes and forward them to the base station. The setting of the number of rounds in which the Base Station keeps the same set of cluster heads is another contribution of the present paper. The results show significant improvements achieved by the proposal when compared to other current clustering methods.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Fan Chao ◽  
Zhiqin He ◽  
Aiping Pang ◽  
Hongbo Zhou ◽  
Junjie Ge

In the water area monitoring of the traditional wireless sensor networks (WSNs), the monitoring data are mostly transmitted to the base station through multihop. However, there are many problems in multihop transmission in traditional wireless sensor networks, such as energy hole, uneven energy consumption, unreliable data transmission, and so on. Based on the high maneuverability of unmanned aerial vehicles (UAVs), a mobile data collection scheme is proposed, which uses UAV as a mobile sink node in WSN water monitoring and transmits data wirelessly to collect monitoring node data efficiently and flexibly. In order to further reduce the energy consumption of UAV, the terminal nodes are grouped according to the dynamic clustering algorithm and the nodes with high residual energy in the cluster are selected as cluster head nodes. Then, according to the characteristics of sensor nodes with a certain range of wireless signal coverage, the angular bisection method is introduced on the basis of the traditional ant colony algorithm to plan the path of UAV, which further shortens the length of the mobile path. Finally, the effectiveness and correctness of the method are proved by simulation and experimental tests.


Sign in / Sign up

Export Citation Format

Share Document