scholarly journals A substructure-based interval finite element method for problems with uncertain but bounded parameters

2017 ◽  
Vol 9 (1) ◽  
pp. 168781401668407
Author(s):  
Yihuan Zhu ◽  
Guojian Shao ◽  
Jingbo Su ◽  
Ang Li

In this article, the dependency between different elements in solid structures is considered and a substructure-based interval finite element method is used to model the interval properties. The penalty method is applied to impose the necessary constraints for compatibility. In order to obtain the interval stresses, an approximation solution based on the Taylor expansion method is presented. Then, the proposed interval substructure model is expanded to nonlinear problems. In consideration of the nonlinear property of the elasticity modulus, an interval elastoplastic substructure analysis method using constant matrix based on the incremental theory is proposed and the interval expression of the interval stress updated formation is derived. Finally, numerical examples are carried out to demonstrate the reasonability and feasibility of the proposed method and evaluation system.

2012 ◽  
Vol 256-259 ◽  
pp. 596-599
Author(s):  
Zong Jian Yao ◽  
Gui Lan Yu ◽  
Yue Sheng Wang

Propagation of flexural vibration in a ternary phononic crystal thin plate with a point defect are explored using finite element method. The thin concrete plate is composed of steel cylinders hemmed around by rubber with a square lattice. Absolute band gaps, point defect bands and transmission response curves with low frequency are investigated. Comparing the results of finite element method with that of improved plane wave expansion method, precise identifications are obtained to identify the point defect states. The results show that the finite element method is suitable for the exploring of flexural vibration propagating in ternary phononic crystal thin plates.


2011 ◽  
Vol 199-200 ◽  
pp. 500-504 ◽  
Author(s):  
Wei Zhao ◽  
Ji Ke Liu

We present a new response surface based stochastic finite element method to obtain solutions for general random uncertainty problems using the polynomial chaos expansion. The approach is general but here a typical elastostatics example only with the random field of Young's modulus is presented to illustrate the stress analysis, and computational comparison with the traditional polynomial expansion approach is also performed. It shows that the results of the polynomial chaos expansion are improved compared with that of the second polynomial expansion method.


Sign in / Sign up

Export Citation Format

Share Document