scholarly journals Adaptive fault tolerant control for hypersonic vehicle with external disturbance

2017 ◽  
Vol 14 (1) ◽  
pp. 172988141668713 ◽  
Author(s):  
Bing Huang ◽  
Aijun Li ◽  
Bin Xu

In this article, an adaptive fault tolerant control strategy is proposed to solve the trajectory tracking problem of a generic hypersonic vehicle subjected to actuator fault, external disturbance, and input saturation. The longitudinal model of generic hypersonic vehicle is divided into velocity subsystem and altitude subsystem, in which dynamic inversion and backstepping are applied, respectively, to track the desired trajectories. For the unknown maximum disturbance upper bound, actuator fault, and input saturation constraint, adaptive laws are proposed to estimate these information online. Finally, numeric simulation is conducted in the cruise phase for generic hypersonic vehicle. Simulation results show that the controllers designed in this article can make generic hypersonic vehicle track the desired trajectories in the presence of actuator fault, external disturbance, and input saturation.

2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Liang Zheng ◽  
Xuelian Dong ◽  
Qian Luo ◽  
Menglan Zeng ◽  
Xinping Yang ◽  
...  

In this paper, an adaptive sliding mode fault tolerant control (ASMFTC) approach is proposed for a class of nonlinear systems with actuator fault, uncertainty, and external disturbance. Specifically, first, a novel observer is proposed to estimate the state, actuator fault, and external disturbance. Then, by utilising the observed information, a novel output sliding mode observer is constructed. In the control method, an adaptive law and two compensators are designed to attenuate the unknown estimation errors, actuator fault, and disturbance. Furthermore, the reaching ability of the sliding motion is analysed and the H-infinite performance is introduced to ensure the robustness of the system. Finally, a flexible single joint manipulator system and a two-cart system are used to verify the effectiveness of the proposed method.


2020 ◽  
Vol 167 ◽  
pp. 302-313
Author(s):  
Jing-Guang Sun ◽  
Chuan-Ming Li ◽  
Yong Guo ◽  
Chang-qing Wang ◽  
Peng Li

Author(s):  
Jing-guang Sun ◽  
Shen-Min Song ◽  
Peng-Li ◽  
Guan-qun Wu

In this paper, related researches and analyses are conducted for the tracking problem of the hypersonic vehicle subject to external disturbances, actuator faults, and input saturation. Firstly, to achieve automatic adjustment of control gains and deal with the impact of dynamic failures of system without requiring prior knowledge of the fault, a new modified fast nonsingular terminal sliding manifold is proposed, and a fast adaptive finite time fault-tolerant controller is provided combining the adaptive control method and terminal sliding mode. Then, a fast adaptive finite time anti-saturation fault-tolerant controller is presented to further solve the problem of input saturation, under which both of the velocity and altitude can track respective reference signal with the actuator input constraint. Finally, the closed-loop stability under the proposed two adaptive fault-tolerant control schemes is analyzed, and numerical simulations of longitudinal model of the hypersonic vehicle are demonstrated to further confirm the effectiveness of the proposed approach.


Author(s):  
Kun Yan ◽  
Mou Chen ◽  
Qingxian Wu

In this paper, the issue of prescribed performance-based fault tolerant control is investigated for the medium-scale unmanned autonomous helicopter with external disturbance, system uncertainty and actuator fault. The altitude and attitude combination unmanned autonomous helicopter model is established. An error transformation function is proposed to guarantee that the tracking error satisfies the prescribed performance. The parameter adaptation method is adopted to handle the external unknown disturbance and the radial basis function neural networks are employed to approximate the interaction functions including the system uncertainty. The auxiliary system is introduced to weaken the effect of actuator fault, which can effectively avoid the singularity. Based on the backstepping control technology, an adaptive neural fault tolerant control scheme is developed to ensure the boundness of all closed-loop system signals and the specified tracking error performance. Simulation studies on the medium-scale unmanned autonomous helicopter are performed to demonstrate the efficiency of the designed control strategy.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Jing Zhao ◽  
Sen Jiang ◽  
Fei Xie ◽  
Zhen He ◽  
Jian Fu

A fault tolerant control (FTC) scheme based on adaptive sliding mode control technique is proposed for manipulator with actuator fault. Firstly, the dynamic model of manipulator is introduced and its actuator faulty model is established. Secondly, a fault tolerant controller is designed, in which both the parameters of actuator fault and external disturbance are estimated and updated by online adaptive technology. Finally, taking a two-joint manipulator as example, simulation results show that the proposed fault tolerant control scheme is effective in tolerating actuator fault; meanwhile it has strong robustness for external disturbance.


Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3812
Author(s):  
Ying Yang ◽  
Bin Wang ◽  
Yuqiang Tian ◽  
Peng Chen

Hydropower units undertake tasks such as peak shaving, frequency modulation, and providing accident reserves in the power system. With the increasing capacity and structural complexity of power systems, hydropower units have become more important. Hydraulic-turbine-governing systems (HTGSs) need to have higher control performance and automation levels to meet the higher regulatory requirements of the power system. To achieve high-quality control, we proposed a new finite-time, fault-tolerant control method for HTGSs with an actuator fault. First, a fractional-order model for HTGSs with uncertainty, external disturbance, and an actuator fault was introduced. Second, a fault estimator that could quickly track the fault signal for an actuator fault was proposed. Then, based on the fractional-order finite-time stability theorem, a finite-time, fault-tolerant controller was proposed for the stabilization of an HTGS. Furthermore, a controller was developed as a fractional differential form combined with a smooth bounded arctangent function to effectively suppress jitters and uncertainties. Finally, numerical experimental results verified the validity and robustness of the proposed scheme.


Sign in / Sign up

Export Citation Format

Share Document